Caustics of Interior Scattering
Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to geometrical optics of short linear waves in an inhomogeneous anisotropic medium. We find some typical singularities of caustics that arise due to the so-called interior scattering of waves, the mathematical theory of which was developed by V. I. Arnold in 1988.
@article{TRSPY_2009_267_a0,
     author = {I. A. Bogaevsky},
     title = {Caustics of {Interior} {Scattering}},
     journal = {Informatics and Automation},
     pages = {7--13},
     year = {2009},
     volume = {267},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a0/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Caustics of Interior Scattering
JO  - Informatics and Automation
PY  - 2009
SP  - 7
EP  - 13
VL  - 267
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a0/
LA  - ru
ID  - TRSPY_2009_267_a0
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Caustics of Interior Scattering
%J Informatics and Automation
%D 2009
%P 7-13
%V 267
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a0/
%G ru
%F TRSPY_2009_267_a0
I. A. Bogaevsky. Caustics of Interior Scattering. Informatics and Automation, Singularities and applications, Tome 267 (2009), pp. 7-13. http://geodesic.mathdoc.fr/item/TRSPY_2009_267_a0/

[1] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR | Zbl

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 8: Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR

[3] Bogaevskii I. A., “Osobennosti rasprostraneniya korotkikh voln na ploskosti”, Mat. sb., 186:11 (1995), 35–52 | MR | Zbl

[4] Bogaevsky I. A., “New singularities and perestroikas of fronts of linear waves”, Moscow Math. J., 3:3 (2003), 807–821 | MR | Zbl

[5] Arnold V. I., “On the interior scattering of waves, defined by hyperbolic variational principles”, J. Geom. and Phys., 5:3 (1988), 305–315 | DOI | MR | Zbl