The Variety of Lie Algebras of Maximal Class
Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 184-201

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an explicit description of the affine variety $M_\mathrm{Fil}$ of Lie algebras of maximal class (filiform Lie algebras): the formulas of polynomial equations that determine this variety are written down. The affine variety $M_\mathrm{Fil}$ can be considered as the base of the nilpotent versal deformation of the $\mathbb N$-graded Lie algebra $\mathfrak m_0$.
@article{TRSPY_2009_266_a9,
     author = {D. V. Millionshchikov},
     title = {The {Variety} of {Lie} {Algebras} of {Maximal} {Class}},
     journal = {Informatics and Automation},
     pages = {184--201},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a9/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - The Variety of Lie Algebras of Maximal Class
JO  - Informatics and Automation
PY  - 2009
SP  - 184
EP  - 201
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a9/
LA  - ru
ID  - TRSPY_2009_266_a9
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T The Variety of Lie Algebras of Maximal Class
%J Informatics and Automation
%D 2009
%P 184-201
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a9/
%G ru
%F TRSPY_2009_266_a9
D. V. Millionshchikov. The Variety of Lie Algebras of Maximal Class. Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 184-201. http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a9/