Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_266_a11, author = {I. Kh. Sabitov}, title = {Locally {Euclidean} {Metrics} with {a~Given} {Geodesic} {Curvature} of the {Boundary}}, journal = {Informatics and Automation}, pages = {218--226}, publisher = {mathdoc}, volume = {266}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a11/} }
I. Kh. Sabitov. Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary. Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 218-226. http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a11/
[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl
[2] Sabitov I. Kh., “Izometricheskie pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb R^2$”, Izv. RAN. Ser. mat., 63:6 (1999), 147–166 | DOI | MR | Zbl
[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl
[4] Pogorelov A. V., Lektsii po differentsialnoi geometrii, Izd-vo Khark. un-ta, Kharkov, 1961, 161 pp.
[5] Gluck H., Krigelman K., Singer D., “The converse to the Gauss–Bonnet theorem in PL”, J. Diff. Geom., 9:4 (1974), 601–616 ; Glyuk G., Krigelman K., Zinger D., “Obratnaya teorema Gaussa–Bonne v KL-klasse”, Issledovaniya po metricheskoi teorii poverkhnostei, Novoe v zarubezhnoi nauke, 18, Mir, M., 1980, 33–52 | MR | Zbl | MR
[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958, 677 pp. | MR