Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary
Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 218-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstructing a locally Euclidean metric on a disk from the geodesic curvature of the boundary given in the sought metric is considered. This problem is an analog and a generalization of the classical problem of finding a closed plane curve from its curvature given as a function of the arc length. The solution of this problem in our approach can be interpreted as finding a plane domain with the standard Euclidean metric whose boundary has a given geodesic curvature.
@article{TRSPY_2009_266_a11,
     author = {I. Kh. Sabitov},
     title = {Locally {Euclidean} {Metrics} with {a~Given} {Geodesic} {Curvature} of the {Boundary}},
     journal = {Informatics and Automation},
     pages = {218--226},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a11/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary
JO  - Informatics and Automation
PY  - 2009
SP  - 218
EP  - 226
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a11/
LA  - ru
ID  - TRSPY_2009_266_a11
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary
%J Informatics and Automation
%D 2009
%P 218-226
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a11/
%G ru
%F TRSPY_2009_266_a11
I. Kh. Sabitov. Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary. Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 218-226. http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a11/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl

[2] Sabitov I. Kh., “Izometricheskie pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb R^2$”, Izv. RAN. Ser. mat., 63:6 (1999), 147–166 | DOI | MR | Zbl

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR | Zbl

[4] Pogorelov A. V., Lektsii po differentsialnoi geometrii, Izd-vo Khark. un-ta, Kharkov, 1961, 161 pp.

[5] Gluck H., Krigelman K., Singer D., “The converse to the Gauss–Bonnet theorem in PL”, J. Diff. Geom., 9:4 (1974), 601–616 ; Glyuk G., Krigelman K., Zinger D., “Obratnaya teorema Gaussa–Bonne v KL-klasse”, Issledovaniya po metricheskoi teorii poverkhnostei, Novoe v zarubezhnoi nauke, 18, Mir, M., 1980, 33–52 | MR | Zbl | MR

[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958, 677 pp. | MR