A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices
Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 33-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study a new 15-vertex triangulation $X$ of the complex projective plane $\mathbb C\mathrm P^2$. The automorphism group of $X$ is isomorphic to $S_4\times S_3$. We prove that the triangulation $X$ is the minimal (with respect to the number of vertices) triangulation of $\mathbb C\mathrm P^2$ admitting a chess colouring of four-dimensional simplices. We provide explicit parametrizations for the simplices of $X$ and show that the automorphism group of $X$ can be realized as a group of isometries of the Fubini–Study metric. We find a 33-vertex subdivision $\overline X$ of the triangulation $X$ such that the classical moment mapping $\mu\colon\mathbb C\mathrm P^2\to\Delta^2$ is a simplicial mapping of the triangulation $\overline X$ onto the barycentric subdivision of the triangle $\Delta^2$. We study the relationship of the triangulation $X$ with complex crystallographic groups.
@article{TRSPY_2009_266_a1,
     author = {A. A. Gaifullin},
     title = {A {Minimal} {Triangulation} of {Complex} {Projective} {Plane} {Admitting} {a~Chess} {Colouring} of {Four-Dimensional} {Simplices}},
     journal = {Informatics and Automation},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a1/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices
JO  - Informatics and Automation
PY  - 2009
SP  - 33
EP  - 53
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a1/
LA  - ru
ID  - TRSPY_2009_266_a1
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices
%J Informatics and Automation
%D 2009
%P 33-53
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a1/
%G ru
%F TRSPY_2009_266_a1
A. A. Gaifullin. A Minimal Triangulation of Complex Projective Plane Admitting a~Chess Colouring of Four-Dimensional Simplices. Informatics and Automation, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 33-53. http://geodesic.mathdoc.fr/item/TRSPY_2009_266_a1/