$p$-Adic Brownian Motion over $\mathbb Q_p$
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 125-141

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize the result of Bikulov and Volovich (1997) and construct a $p$-adic Brownian motion over $\mathbb Q_p$. First, we construct directly a $p$-adic white noise over $\mathbb Q_p$ by using a specific complete orthonormal system of $\mathbb L^2(\mathbb Q_p)$. A $p$-adic Brownian motion over $\mathbb Q_p$ is then constructed by the Paley–Wiener method. Finally, we introduce a $p$-adic random walk and prove a theorem on the approximation of a $p$-adic Brownian motion by a $p$-adic random walk.
@article{TRSPY_2009_265_a9,
     author = {K. Kamizono},
     title = {$p${-Adic} {Brownian} {Motion} over $\mathbb Q_p$},
     journal = {Informatics and Automation},
     pages = {125--141},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a9/}
}
TY  - JOUR
AU  - K. Kamizono
TI  - $p$-Adic Brownian Motion over $\mathbb Q_p$
JO  - Informatics and Automation
PY  - 2009
SP  - 125
EP  - 141
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a9/
LA  - en
ID  - TRSPY_2009_265_a9
ER  - 
%0 Journal Article
%A K. Kamizono
%T $p$-Adic Brownian Motion over $\mathbb Q_p$
%J Informatics and Automation
%D 2009
%P 125-141
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a9/
%G en
%F TRSPY_2009_265_a9
K. Kamizono. $p$-Adic Brownian Motion over $\mathbb Q_p$. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 125-141. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a9/