On Schnabl Solutions of String Field Equations
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 70-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We clarify the relationship between Schnabl's solution and pure gauge configurations. Both Schnabl's and pure gauge solutions are obtained by means of an iterative procedure. We show that the pure gauge string field configuration that is used in the construction of a perturbation series for Schnabl's solution diverges on a large subspace of string configurations, but it can be rendered convergent by adding a compensating term. The additional term ensures the fulfillment of the equations of motion in a weak sense. This compensating term coincides with the term necessary for obtaining an action consistent with Sen's first conjecture.
@article{TRSPY_2009_265_a4,
author = {I. Ya. Aref'eva and R. V. Gorbachev and M. V. Mal'tsev and P. B. Medvedev},
title = {On {Schnabl} {Solutions} of {String} {Field} {Equations}},
journal = {Informatics and Automation},
pages = {70--81},
publisher = {mathdoc},
volume = {265},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a4/}
}
TY - JOUR AU - I. Ya. Aref'eva AU - R. V. Gorbachev AU - M. V. Mal'tsev AU - P. B. Medvedev TI - On Schnabl Solutions of String Field Equations JO - Informatics and Automation PY - 2009 SP - 70 EP - 81 VL - 265 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a4/ LA - ru ID - TRSPY_2009_265_a4 ER -
I. Ya. Aref'eva; R. V. Gorbachev; M. V. Mal'tsev; P. B. Medvedev. On Schnabl Solutions of String Field Equations. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 70-81. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a4/