Unbounded Transforms and Approximation of Functions over $p$-adic Fields
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 220-228
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider functions of a $p$-adic variable with values in different spaces. In each case we consider an unbounded integral operator and a corresponding issue. More precisely, we study the Riesz–Volkenborn integral representation of functions with values in a non-Archimedean field, the Vladimirov operator and corresponding vectors of exponential type in spaces of complex-valued functions, and the Fourier transform and its (dis)continuity in spaces of Banach-valued functions.
@article{TRSPY_2009_265_a18,
author = {A. Radyna and Ya. Radyna and Ya. Radyno},
title = {Unbounded {Transforms} and {Approximation} of {Functions} over $p$-adic {Fields}},
journal = {Informatics and Automation},
pages = {220--228},
publisher = {mathdoc},
volume = {265},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a18/}
}
TY - JOUR AU - A. Radyna AU - Ya. Radyna AU - Ya. Radyno TI - Unbounded Transforms and Approximation of Functions over $p$-adic Fields JO - Informatics and Automation PY - 2009 SP - 220 EP - 228 VL - 265 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a18/ LA - en ID - TRSPY_2009_265_a18 ER -
A. Radyna; Ya. Radyna; Ya. Radyno. Unbounded Transforms and Approximation of Functions over $p$-adic Fields. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 220-228. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a18/