Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 211-219

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there is no single uniform tight frame in Euclidean (unitary) space such that a solution of the $\ell_1$-norm minimization problem for the frame representation is attained on the frame coefficients. Then we find an exact solution of the $\ell_1$-minimization problem for the Mercedes-Benz frame in $\mathbb R^N$. We also give some examples of connections between optimization problems of various types.
@article{TRSPY_2009_265_a17,
     author = {S. Ya. Novikov and I. S. Ryabtsov},
     title = {Optimization of {Frame} {Representations} for {Compressed} {Sensing} and {Mercedes-Benz} {Frame}},
     journal = {Informatics and Automation},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a17/}
}
TY  - JOUR
AU  - S. Ya. Novikov
AU  - I. S. Ryabtsov
TI  - Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
JO  - Informatics and Automation
PY  - 2009
SP  - 211
EP  - 219
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a17/
LA  - en
ID  - TRSPY_2009_265_a17
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%A I. S. Ryabtsov
%T Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
%J Informatics and Automation
%D 2009
%P 211-219
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a17/
%G en
%F TRSPY_2009_265_a17
S. Ya. Novikov; I. S. Ryabtsov. Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 211-219. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a17/