Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2009_265_a1, author = {S. Albeverio and S. V. Kozyrev}, title = {Multidimensional {Ultrametric} {Pseudodifferential} {Equations}}, journal = {Informatics and Automation}, pages = {19--35}, publisher = {mathdoc}, volume = {265}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a1/} }
S. Albeverio; S. V. Kozyrev. Multidimensional Ultrametric Pseudodifferential Equations. Informatics and Automation, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 19-35. http://geodesic.mathdoc.fr/item/TRSPY_2009_265_a1/
[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[2] Khrennikov A. Yu., Nilsson M., $p$-Adic deterministic and random dynamics, Kluwer, Dordrecht, 2004 | MR | Zbl
[3] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, M. Dekker, New York, 2001 | MR | Zbl
[4] Kozyrev S. V., Metody i prilozheniya ultrametricheskogo i $p$-adicheskogo analiza: ot teorii vspleskov do biofiziki, Sovr. probl. matematiki, 12, MIAN, M., 2008 ; http://www.mi.ras.ru/spm/pdf/012.pdf | DOI
[5] Albeverio S., Karwowski W., “A random walk on $p$-adics – the generator and its spectrum”, Stoch. Processes and Appl., 53\:1 (1994), 1–22 | DOI | MR | Zbl
[6] Albeverio S., Zhao X., “On the relation between different constructions of random walks on $p$-adics”, Markov Processes and Relat. Fields, 6 (2000), 239–255 | MR | Zbl
[7] Yasuda K., “Additive processes on local fields”, J. Math. Sci. Univ. Tokyo, 3 (1996), 629–654 | MR | Zbl
[8] Evans S., “Local fields, Gaussian measures, and Brownian motions”, Topics in probability and Lie groups: boundary theory, CRM Proc. Lect. Notes, 28, Amer. Math. Soc., Providence, RI\, 2001, 11–50 | MR | Zbl
[9] Kozyrev S. V., “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. mat., 66:2 (2002), 149–158 ; arxiv: math-ph/0012019 | DOI | MR | Zbl
[10] Benedetto J. J., Benedetto R. L., “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | DOI | MR | Zbl
[11] Kozyrev S. V., Khrennikov A. Yu., “Psevdodifferentsialnye operatory na ultrametricheskikh prostranstvakh i ultrametricheskie vspleski”, Izv. RAN. Ser. mat., 69:5 (2005), 133–148 | DOI | MR | Zbl
[12] Khrennikov A. Yu., Kozyrev S. V., “Wavelets on ultrametric spaces”, Appl. and Comput. Harmon. Anal., 19 (2005), 61–76 | DOI | MR | Zbl
[13] Kozyrev S. V., “Vspleski i spektralnyi analiz ultrametricheskikh psevdodifferentsialnykh operatorov”, Mat. sb., 198:1 (2007), 103–126 | DOI | MR | Zbl
[14] Shelkovich V. M., Skopina M., $p$-Adic Haar multiresolution analysis, E-print , 2007 arxiv: 0704.0736 | Zbl
[15] Albeverio S., Kozyrev S. V., Coincidence of the continuous and discrete $p$-adic wavelet transforms, E-print , 2007 arxiv: math-ph/0702010
[16] Kozyrev S. V., “$p$-Adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, TMF, 138:3 (2004), 383–394 | DOI | MR | Zbl
[17] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., “Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems”, J. Fourier Anal. and Appl., 12:4 (2006), 393–425 | DOI | MR | Zbl
[18] Schaefer H. H., Topological vector spaces, Springer, New York, 1999 | MR