Equivariant Derived Category of Bundles of Projective Spaces
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 63-68
Cet article a éte moissonné depuis la source Math-Net.Ru
We give an analog of D. O. Orlov's theorem on semiorthogonal decompositions of the derived category of projective bundles for the case of equivariant derived categories. Under the condition that the action of a finite group on the projectivization $X$ of a vector bundle $E$ is compatible with the twisted action of the group on the bundle $E$, we construct a semiorthogonal decomposition of the derived category of equivariant coherent sheaves on $X$ into subcategories equivalent to the derived categories of twisted sheaves on the base scheme.
@article{TRSPY_2009_264_a6,
author = {A. Elagin},
title = {Equivariant {Derived} {Category} of {Bundles} of {Projective} {Spaces}},
journal = {Informatics and Automation},
pages = {63--68},
year = {2009},
volume = {264},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a6/}
}
A. Elagin. Equivariant Derived Category of Bundles of Projective Spaces. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 63-68. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a6/
[1] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. mat., 56:4 (1992), 852–862 | MR | Zbl
[2] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR
[3] Gelfand C. I., Manin Yu. I., Metody gomologicheskoi algebry, T. 1, Nauka, M., 1988
[4] Hartshorne R., Residues and duality, Springer, New York, 1966 | MR | Zbl
[5] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 25–44 | MR | Zbl