Threefolds of Order One in the Six-Quadric
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 25-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the smooth quadric $Q_6$ in $\mathbb P^7$. The middle homology group $H_6(Q_6,\mathbb Z)$ is isomorphic to $\mathbb Z\oplus\mathbb Z$, with a basis given by two classes of linear subspaces. We classify all threefolds of bidegree $(1,p)$ inside $Q_6$.
@article{TRSPY_2009_264_a2,
     author = {L. Borisov and J. Viaclovsky},
     title = {Threefolds of {Order} {One} in the {Six-Quadric}},
     journal = {Informatics and Automation},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a2/}
}
TY  - JOUR
AU  - L. Borisov
AU  - J. Viaclovsky
TI  - Threefolds of Order One in the Six-Quadric
JO  - Informatics and Automation
PY  - 2009
SP  - 25
EP  - 36
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a2/
LA  - en
ID  - TRSPY_2009_264_a2
ER  - 
%0 Journal Article
%A L. Borisov
%A J. Viaclovsky
%T Threefolds of Order One in the Six-Quadric
%J Informatics and Automation
%D 2009
%P 25-36
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a2/
%G en
%F TRSPY_2009_264_a2
L. Borisov; J. Viaclovsky. Threefolds of Order One in the Six-Quadric. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 25-36. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a2/

[1] Borisov L., Salamon S., Viaclovsky J., Orthogonal complex structures in Euclidean spaces, Preprint, Univ. Wisconsin and Politechn. Torino, 2008 | MR | Zbl

[2] Cartan É., The theory of spinors, Dover Publ., New York, 1981 | MR | Zbl

[3] Fulton W., Intersection theory, 2nd ed., Ergebn. Math. und ihrer Grenzgeb. (3), 2, Springer, Berlin, 1998 | MR | Zbl

[4] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1994 | MR

[5] Gross M., “The distribution of bidegrees of smooth surfaces in $\mathrm{Gr}(1,\mathbf P^3)$”, Math. Ann., 292:1 (1992), 127–147 | DOI | MR | Zbl

[6] Hartshorne R., Algebraic geometry, Grad. Texts Math., 52, Springer, New York, 1977 | DOI | MR | Zbl

[7] Ran Z., “Surfaces of order 1 in Grassmannians”, J. reine und angew. Math., 368 (1986), 119–126 | MR | Zbl

[8] Salamon S., Viaclovsky J., “Orthogonal complex structures on domains in $\mathbb R^4$”, Math. Ann. (to appear) | MR