Multiple Fibers of del Pezzo Fibrations
Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 137-151

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a terminal three-dimensional del Pezzo fibration has no fibers of multiplicity $>6$. We also obtain a rough classification of possible configurations of singular points on multiple fibers and give some examples.
@article{TRSPY_2009_264_a15,
     author = {S. Mori and Yu. G. Prokhorov},
     title = {Multiple {Fibers} of del {Pezzo} {Fibrations}},
     journal = {Informatics and Automation},
     pages = {137--151},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a15/}
}
TY  - JOUR
AU  - S. Mori
AU  - Yu. G. Prokhorov
TI  - Multiple Fibers of del Pezzo Fibrations
JO  - Informatics and Automation
PY  - 2009
SP  - 137
EP  - 151
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a15/
LA  - en
ID  - TRSPY_2009_264_a15
ER  - 
%0 Journal Article
%A S. Mori
%A Yu. G. Prokhorov
%T Multiple Fibers of del Pezzo Fibrations
%J Informatics and Automation
%D 2009
%P 137-151
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a15/
%G en
%F TRSPY_2009_264_a15
S. Mori; Yu. G. Prokhorov. Multiple Fibers of del Pezzo Fibrations. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 137-151. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a15/