@article{TRSPY_2009_264_a14,
author = {Y. Miyaoka},
title = {Stable {Higgs} {Bundles} with {Trivial} {Chern} {Classes.} {Several} {Examples}},
journal = {Informatics and Automation},
pages = {129--136},
year = {2009},
volume = {264},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a14/}
}
Y. Miyaoka. Stable Higgs Bundles with Trivial Chern Classes. Several Examples. Informatics and Automation, Multidimensional algebraic geometry, Tome 264 (2009), pp. 129-136. http://geodesic.mathdoc.fr/item/TRSPY_2009_264_a14/
[1] Bogomolov F. A., “Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 42:6 (1978), 1227–1287 | MR | Zbl
[2] Donaldson S. K., “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable bundles”, Proc. London Math. Soc. Ser. 3, 50 (1985), 1–26 | DOI | MR | Zbl
[3] Gieseker D., “On a theorem of Bogomolov on Chern classes of stable bundles”, Amer. J. Math., 101 (1979), 77–85 | DOI | MR | Zbl
[4] Hirzebruch F., “Arrangements of lines and algebraic surfaces”, Arithmetic and geometry. V. 2: Geometry, Progr. Math., 36, Birkhäuser, Boston, 1983, 113–140 | MR
[5] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. Ser. 3, 55 (1987), 59–126 | DOI | MR | Zbl
[6] Ishida M.-N., “The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$”, Math. Ann., 262 (1983), 407–420 | DOI | MR | Zbl
[7] Langer A., “A note on Bogomolov's instability and Higgs sheaves”, Algebraic geometry, A volume in memory of Paolo Francia, de Gruyter, Berlin, 2002, 237–256 | MR | Zbl
[8] Miyaoka Y., “The Chern classes and Kodaira dimension of a minimal variety”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, Kinokuniya, Tokyo, 1987, 449–476 | MR
[9] Simpson C., “Higgs bundles and local systems”, Publ. Math. IHES, 75 (1992), 5–95 | DOI | MR | Zbl
[10] Yau S.-T., “On Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798–1799 | DOI | MR | Zbl