Topology of Vortices in Neutron Stars
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 135-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of vortex solutions in a rotating neutron star is discussed. It is shown that the presence of additional topological charge gives rise to a significant modification of the vortex lattice.
@article{TRSPY_2008_263_a9,
     author = {M. I. Monastyrskii and P. V. Sasorov},
     title = {Topology of {Vortices} in {Neutron} {Stars}},
     journal = {Informatics and Automation},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a9/}
}
TY  - JOUR
AU  - M. I. Monastyrskii
AU  - P. V. Sasorov
TI  - Topology of Vortices in Neutron Stars
JO  - Informatics and Automation
PY  - 2008
SP  - 135
EP  - 142
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a9/
LA  - ru
ID  - TRSPY_2008_263_a9
ER  - 
%0 Journal Article
%A M. I. Monastyrskii
%A P. V. Sasorov
%T Topology of Vortices in Neutron Stars
%J Informatics and Automation
%D 2008
%P 135-142
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a9/
%G ru
%F TRSPY_2008_263_a9
M. I. Monastyrskii; P. V. Sasorov. Topology of Vortices in Neutron Stars. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 135-142. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a9/

[1] Yakovlev D. G., Levenfish K. P., Shibanov Yu. A., “Ostyvanie neitronnykh zvezd i sverkhtekuchest v ikh yadrakh”, UFN, 169:8 (1999), 825–868 | DOI

[2] Tkachenko V. K., “Ustoichivost vikhrevykh reshetok”, ZhETF, 50 (1966), 1573–1585 | MR

[3] Ruderman M., “Long period oscillations in rotating neutron stars”, Nature, 225 (1970), 619–620 | DOI

[4] Dyson F., Neutron stars and pulsars, Fermi lectures 1970, Accad. Naz. Lincei, Roma, 1971

[5] Sauls J. A., Serene J. W., “$^3P_2$ pairing near the transition temperature in neutron-star matter”, Phys. Rev. D, 17 (1978), 1524–1528 | DOI

[6] Govers E., Vertogen G., “Elastic continuum theory of biaxial nematics”, Phys. Rev. A, 30 (1984), 1998–2000 ; “Erratum”, Phys. Rev. A, 31 (1985), 1957 | DOI | DOI

[7] Golo V. L., Monastyrsky M. I., Gauge groups and topological invariants of vacuum manifolds, Preprint ITEP No 173, 1976 ; Ann. Inst. H. Poincaré A: Phys. Théor., 28 (1978), 75–89 | MR | Zbl

[8] Bogomolov F. A., Monastyrskii M. I., “Geometriya prostranstva orbit i fazy $^3$Ne i neitronnoi zvezdy v $P$-sostoyanii”, TMF, 73:2 (1987), 210–222 | MR

[9] Monastyrsky M., Topology of gauge fields and condensed matter, Plenum, New York, 1993 | MR | Zbl

[10] Brand H., Pleiner H., “Broken symmetries and hydrodynamics of superfluid $^3P_2$-neutron-star matter”, Phys. Rev. D, 24 (1981), 3048–3057 | DOI

[11] Sedrakyan D. M., Savvidi G. K., “Forma kvantovykh vikhrevykh nitei vo vraschayuschikhsya neitronnykh zvezdakh”, Astrofizika, 15 (1979), 359–362