Graphs of Linear Operators
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 64-71

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2006 the author proposed an algorithm for constructing graphs of difference operators. In this paper, the following question is studied: to which linear operators $\mathcal A$ does this algorithm apply? Graphs of difference operators are used to determine the complexity of a sequence in the sense of Arnold, so the algorithm makes it possible to determine the complexity of any sequence.
@article{TRSPY_2008_263_a4,
     author = {A. I. Garber},
     title = {Graphs of {Linear} {Operators}},
     journal = {Informatics and Automation},
     pages = {64--71},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a4/}
}
TY  - JOUR
AU  - A. I. Garber
TI  - Graphs of Linear Operators
JO  - Informatics and Automation
PY  - 2008
SP  - 64
EP  - 71
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a4/
LA  - ru
ID  - TRSPY_2008_263_a4
ER  - 
%0 Journal Article
%A A. I. Garber
%T Graphs of Linear Operators
%J Informatics and Automation
%D 2008
%P 64-71
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a4/
%G ru
%F TRSPY_2008_263_a4
A. I. Garber. Graphs of Linear Operators. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 64-71. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a4/