Ring of Simple Polytopes and Differential Equations
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 18-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple polytopes are a classical object of convex geometry. They play a key role in many modern fields of research, such as algebraic and symplectic geometry, toric topology, enumerative combinatorics, and mathematical physics. In this paper, the results of a new approach based on a differential ring of simple polytopes are described. This approach allows one to apply the theory of differential equations to the study of combinatorial invariants of simple polytopes.
@article{TRSPY_2008_263_a2,
     author = {V. M. Buchstaber},
     title = {Ring of {Simple} {Polytopes} and {Differential} {Equations}},
     journal = {Informatics and Automation},
     pages = {18--43},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Ring of Simple Polytopes and Differential Equations
JO  - Informatics and Automation
PY  - 2008
SP  - 18
EP  - 43
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a2/
LA  - ru
ID  - TRSPY_2008_263_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Ring of Simple Polytopes and Differential Equations
%J Informatics and Automation
%D 2008
%P 18-43
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a2/
%G ru
%F TRSPY_2008_263_a2
V. M. Buchstaber. Ring of Simple Polytopes and Differential Equations. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 18-43. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a2/

[1] Bukhshtaber V. M., Kholodov A. N., “Formalnye gruppy, funktsionalnye uravneniya i obobschennye teorii kogomologii”, Mat. sb., 181:1 (1990), 75–94 | MR | Zbl

[2] Bukhshtaber V. M., Panov T. E., “Kombinatorika simplitsialnykh kletochnykh kompleksov i toricheskie deistviya”, Tr. MIAN, 247, Nauka, M., 2004, 41–58 | MR | Zbl

[3] Bukhshtaber V. M., Panov T. E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR

[4] Bukhshtaber V. M., Koritskaya E. V., “Kvazilineinoe uravnenie Byurgersa–Khopfa i mnogogranniki Stashefa”, Funkts. analiz i ego pril., 41:3 (2007), 34–47 | MR

[5] Buchstaber V. M., Ray N., “An invitation to toric topology: Vertex four of a remarkable tetrahedron”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 | MR | Zbl

[6] Bukhshtaber V. M., “$f$-Polinomy prostykh mnogogrannikov i dvukhparametricheskii rod Todda”, UMN, 63:3 (2008), 153–154 | MR

[7] Fenn A., “The face-polynomial of nestohedra”, Differential equations and topology, Abstr. Intern. Conf. dedicated to the centennial anniversary of L. S. Pontryagin (Moscow, June 17–22, 2008), Maks Press, M., 2008, 435

[8] Gal S. R., Real root conjecture fails for five and higher dimensional spheres, E-print , 2005 arXiv: math/0501046v1[math.CO] | MR

[9] Hirzebruch F., Topological methods in algebraic geometry, Springer, Berlin–Heidelberg–New York, 1966 ; Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973 | MR | Zbl

[10] Krichever I. M., “Formalnye gruppy i formula Ati–Khirtsebrukha”, Izv. AN SSSR. Ser. mat., 38:6 (1974), 1289–1304 | MR | Zbl

[11] McMullen P., “The polytope algebra”, Adv. Math., 78 (1989), 76–130 | DOI | MR | Zbl

[12] McMullen P., “On simple polytopes”, Invent math., 113 (1993), 419–444 | DOI | MR | Zbl

[13] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. mat., 31:4 (1967), 855–951 | MR | Zbl

[14] Postnikov A., Reiner V., Williams L., Faces of generalized permutohedra, E-print , 2007 arXiv: math/0609184v2[math.CO] | MR

[15] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1299 | DOI | MR

[16] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[17] Stenli R., Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005 | MR

[18] Timorin V. A., “O mnogogrannikakh, prostykh v rebrakh”, Funkts. analiz i ego pril., 35:3 (2001), 36–47 | MR | Zbl

[19] Zelevinsky A., Nested complexes and their polyhedral realizations, E-print , 2006 arXiv: math/0507277v4[math.CO] | MR