Minimal Peano Curve
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 251-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Peano curve $p(x)$ with maximum square-to-linear ratio $\frac{|p(x)-p(y)|^2}{|x-y|}$ equal to $5\frac23$ is constructed; this ratio is smaller than that of the classical Peano–Hilbert curve, whose maximum square-to-linear ratio is 6. The curve constructed is of fractal genus 9 (i.e., it is decomposed into nine fragments that are similar to the whole curve) and of diagonal type (i.e., it intersects a square starting from one corner and ending at the opposite corner). It is proved that this curve is a unique (up to isometry) regular diagonal Peano curve of fractal genus 9 whose maximum square-to-linear ratio is less than 6. A theory is developed that allows one to find the maximum square-to-linear ratio of a regular Peano curve on the basis of computer calculations.
@article{TRSPY_2008_263_a16,
     author = {E. V. Shchepin and K. E. Bauman},
     title = {Minimal {Peano} {Curve}},
     journal = {Informatics and Automation},
     pages = {251--271},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a16/}
}
TY  - JOUR
AU  - E. V. Shchepin
AU  - K. E. Bauman
TI  - Minimal Peano Curve
JO  - Informatics and Automation
PY  - 2008
SP  - 251
EP  - 271
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a16/
LA  - ru
ID  - TRSPY_2008_263_a16
ER  - 
%0 Journal Article
%A E. V. Shchepin
%A K. E. Bauman
%T Minimal Peano Curve
%J Informatics and Automation
%D 2008
%P 251-271
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a16/
%G ru
%F TRSPY_2008_263_a16
E. V. Shchepin; K. E. Bauman. Minimal Peano Curve. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 251-271. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a16/

[1] Schepin E. V., “Povyshayuschie razmernost otobrazheniya i nepreryvnaya peredacha informatsii”, Voprosy chistoi i prikladnoi matematiki, T. 1, Priok. kn. izd-vo, Tula, 1987, 148–155

[2] Schepin E. V., “O fraktalnykh krivykh Peano”, Tr. MIAN, 247, Nauka, M., 2004, 294–303 | MR | Zbl

[3] Schepin E. V., Bauman K. E., “O krivykh Peano fraktalnogo roda 9”, Modelirovanie i analiz dannykh, Tr. fak. inform. tekhnol. MGPPU, Vyp. 1, Rusavia, M., 2004, 79–89

[4] Bauman K. E., “Koeffitsient rastyazheniya krivoi Peano–Gilberta”, Mat. zametki, 80:5 (2006), 643–656 | MR | Zbl