Piecewise Smooth Developable Surfaces
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 227-250

Voir la notice de l'article provenant de la source Math-Net.Ru

A. V. Pogorelov introduced developable surfaces with regularity (twice differentiability) violated along separate lines. In particular, the surface may not be smooth at all points of these lines (which form edges in this case). It is assumed that each point of the surface under consideration that belongs to a curvilinear edge (as well as any other interior point of this surface) has a neighborhood isometric to a Euclidean disk. In this paper we study the behavior of a developable surface near its curvilinear edge. It is proved that if two smooth pieces of a developable surface are adjacent along a curvilinear edge, then the spatial location of one of them in $\mathbb R^3$ is uniquely determined by that of the other.
@article{TRSPY_2008_263_a15,
     author = {M. I. Shtogrin},
     title = {Piecewise {Smooth} {Developable} {Surfaces}},
     journal = {Informatics and Automation},
     pages = {227--250},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a15/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - Piecewise Smooth Developable Surfaces
JO  - Informatics and Automation
PY  - 2008
SP  - 227
EP  - 250
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a15/
LA  - ru
ID  - TRSPY_2008_263_a15
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T Piecewise Smooth Developable Surfaces
%J Informatics and Automation
%D 2008
%P 227-250
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a15/
%G ru
%F TRSPY_2008_263_a15
M. I. Shtogrin. Piecewise Smooth Developable Surfaces. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 227-250. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a15/