Local Contractibility of the Homeomorphism Group of $\mathbb R^n$
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 201-215
Cet article a éte moissonné depuis la source Math-Net.Ru
The goal of this paper is to give a modified exposition of the main part of the proof of the local contractibility theorem. The derivation of general theorems from the special case of Euclidean space remains intact. The exposition is rather detailed and is aimed, in particular, at correcting an inaccuracy in the original proof.
@article{TRSPY_2008_263_a13,
author = {A. V. Chernavskii},
title = {Local {Contractibility} of the {Homeomorphism} {Group} of~$\mathbb R^n$},
journal = {Informatics and Automation},
pages = {201--215},
year = {2008},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a13/}
}
A. V. Chernavskii. Local Contractibility of the Homeomorphism Group of $\mathbb R^n$. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 201-215. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a13/
[1] Novikov S. P., “O mnogoobraziyakh so svobodnoi abelevoi fundamentalnoi gruppoi i ikh primeneniyakh (klassy Pontryagina, gladkosti, mnogomernye uzly)”, Izv. AN SSSR. Ser. mat., 30:1 (1966), 207–246 | MR | Zbl
[2] Kirby R. C., “Stable homeomorphisms and the annulus conjecture”, Ann. Math., 89 (1969), 575–582 | DOI | MR | Zbl
[3] Chernavskii A. V., “Lokalnaya styagivaemost gruppy gomeomorfizmov mnogoobraziya”, Mat. sb., 79(121):3 (1969), 307–356 | MR | Zbl
[4] Kirby R. C., Siebenmann L. C., “On the triangulation of manifolds and the Hauptvermutung”, Bull. Amer. Math. Soc., 75 (1969), 742–749 | DOI | MR | Zbl