Noncompact Riemannian Spaces with the Holonomy Group $\operatorname{Spin}(7)$ and 3-Sasakian Manifolds
Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 6-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the study of the existence of Riemannian metrics with $\operatorname{Spin}(7)$ holonomy that smoothly resolve standard cone metrics on noncompact manifolds and orbifolds related to 7-dimensional 3-Sasakian spaces.
@article{TRSPY_2008_263_a1,
     author = {Ya. V. Bazaikin},
     title = {Noncompact {Riemannian} {Spaces} with the {Holonomy} {Group} $\operatorname{Spin}(7)$ and {3-Sasakian} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {6--17},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a1/}
}
TY  - JOUR
AU  - Ya. V. Bazaikin
TI  - Noncompact Riemannian Spaces with the Holonomy Group $\operatorname{Spin}(7)$ and 3-Sasakian Manifolds
JO  - Informatics and Automation
PY  - 2008
SP  - 6
EP  - 17
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a1/
LA  - ru
ID  - TRSPY_2008_263_a1
ER  - 
%0 Journal Article
%A Ya. V. Bazaikin
%T Noncompact Riemannian Spaces with the Holonomy Group $\operatorname{Spin}(7)$ and 3-Sasakian Manifolds
%J Informatics and Automation
%D 2008
%P 6-17
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a1/
%G ru
%F TRSPY_2008_263_a1
Ya. V. Bazaikin. Noncompact Riemannian Spaces with the Holonomy Group $\operatorname{Spin}(7)$ and 3-Sasakian Manifolds. Informatics and Automation, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 6-17. http://geodesic.mathdoc.fr/item/TRSPY_2008_263_a1/

[1] Bazaikin Ya. V., “O novykh primerakh polnykh nekompaktnykh metrik s gruppoi golonomii $\operatorname{Spin}(7)$”, Sib. mat. zhurn., 48:1 (2007), 11–32 | MR | Zbl

[2] Bryant R. L., “Metrics with exceptional holonomy”, Ann. Math., 126 (1987), 525–576 | DOI | MR | Zbl

[3] Bryant R. L., Salamon S. L., “On the construction of some complete metrics with exceptional holonomy”, Duke Math. J., 58 (1989), 829–850 | DOI | MR | Zbl

[4] Joyce D. D., “Compact 8-manifolds with holonomy $\operatorname{Spin}(7)$”, Invent. math., 123:3 (1996), 507–552 | DOI | MR | Zbl

[5] Cvetič M., Gibbons G. W., Lü H., Pope C. N., “New complete non-compact $\operatorname{Spin}(7)$ manifolds”, Nucl. Phys. B, 620 (2002), 29–54 | DOI | MR | Zbl

[6] Cvetič M., Gibbons G. W., Lü H., Pope C. N., “New cohomogeneity one metrics with $\operatorname{Spin}(7)$ holonomy”, J. Geom. Phys., 49 (2004), 350–365 | DOI | MR | Zbl

[7] Cvetič M., Gibbons G. W., Lü H., Pope C. N., “Cohomogeneity one manifolds of $\operatorname{Spin}(7)$ and $G_2$ holonomy”, Phys. Rev. D, 65:10 (2002), 106004 | DOI | MR

[8] Gukov S., Sparks J., “$M$-theory on $\operatorname{Spin}(7)$ manifolds”, Nucl. Phys. B, 625 (2002), 3–69 | DOI | MR | Zbl

[9] Kanno H., Yasui Y., “On $\operatorname{Spin}(7)$ holonomy metric based on $\operatorname{SU}(3)/U(1)$”, J. Geom. Phys., 43 (2002), 293–309 | DOI | MR | Zbl

[10] Kanno H., Yasui Y., “On $\operatorname{Spin}(7)$ holonomy metric based on $\operatorname{SU}(3)/U(1)$. II”, J. Geom. Phys., 43 (2002), 310–326 | DOI | MR | Zbl

[11] Gray A., “Weak holonomy groups”, Math. Ztschr., 123 (1971), 290–300 | DOI | MR | Zbl

[12] Boyer C., Galicki K., “3-Sasakian manifolds”, Surveys in differential geometry: Essays on Einstein manifolds, Surv. Diff. Geom., 6, Intern. Press, Boston, MA, 1999, 123–184 | MR | Zbl

[13] Reidegeld F., “$\operatorname{Spin}(7)$-manifolds of cohomogeneity one”, Special geometries in mathematical physics, Workshop, Kuehlungsborn, 2008

[14] Bérard-Bergery L., “Sur de nouvelles variétés riemanniennes d'Einstein”, Inst. Élie Cartan. Nancy, 6 (1982), 1–60 | MR

[15] Page D. N., Pope C. N., “Inhomogeneous Einstein metrics on complex line bundles”, Class. Quantum Gravity, 4:2 (1987), 213–225 | DOI | MR | Zbl