Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand
Informatics and Automation, Optimal control, Tome 262 (2008), pp. 222-239

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear optimal control problem with an integral functional in which the integrand contains the characteristic function of a given closed subset of the phase space. Using an approximation method, we prove necessary optimality conditions in the form of the Pontryagin maximum principle without any a priori assumptions about the behavior of an optimal trajectory.
@article{TRSPY_2008_262_a16,
     author = {A. I. Smirnov},
     title = {Necessary {Optimality} {Conditions} for {a~Class} of {Optimal} {Control} {Problems} with {Discontinuous} {Integrand}},
     journal = {Informatics and Automation},
     pages = {222--239},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a16/}
}
TY  - JOUR
AU  - A. I. Smirnov
TI  - Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand
JO  - Informatics and Automation
PY  - 2008
SP  - 222
EP  - 239
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a16/
LA  - ru
ID  - TRSPY_2008_262_a16
ER  - 
%0 Journal Article
%A A. I. Smirnov
%T Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand
%J Informatics and Automation
%D 2008
%P 222-239
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a16/
%G ru
%F TRSPY_2008_262_a16
A. I. Smirnov. Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand. Informatics and Automation, Optimal control, Tome 262 (2008), pp. 222-239. http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a16/