Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
Informatics and Automation, Optimal control, Tome 262 (2008), pp. 8-15
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the study of the properties of solutions to pursuit–evasion game problems. We study such properties as the connectedness and continuous time dependence of the sections of the successful solvability set. We obtain a sufficient condition for the connectedness and continuous time dependence of sections.
@article{TRSPY_2008_262_a1,
author = {Yu. V. Averboukh},
title = {Geometric {Properties} of {Successful} {Solvability} {Sets} in {Pursuit} {Game} {Problems}},
journal = {Informatics and Automation},
pages = {8--15},
year = {2008},
volume = {262},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a1/}
}
Yu. V. Averboukh. Geometric Properties of Successful Solvability Sets in Pursuit Game Problems. Informatics and Automation, Optimal control, Tome 262 (2008), pp. 8-15. http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a1/
[1] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR
[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[3] Averbukh Yu. V., “K voprosu o strukture mnozhestva pozitsionnogo pogloscheniya v igrovoi zadache navedeniya”, Problemy upravleniya i informatiki, 2006, no. 3, 5–9 | MR
[4] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., Izhevsk; Moskva, 2003
[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005 | MR