Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
Informatics and Automation, Optimal control, Tome 262 (2008), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the properties of solutions to pursuit–evasion game problems. We study such properties as the connectedness and continuous time dependence of the sections of the successful solvability set. We obtain a sufficient condition for the connectedness and continuous time dependence of sections.
@article{TRSPY_2008_262_a1,
     author = {Yu. V. Averboukh},
     title = {Geometric {Properties} of {Successful} {Solvability} {Sets} in {Pursuit} {Game} {Problems}},
     journal = {Informatics and Automation},
     pages = {8--15},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a1/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
JO  - Informatics and Automation
PY  - 2008
SP  - 8
EP  - 15
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a1/
LA  - ru
ID  - TRSPY_2008_262_a1
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
%J Informatics and Automation
%D 2008
%P 8-15
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a1/
%G ru
%F TRSPY_2008_262_a1
Yu. V. Averboukh. Geometric Properties of Successful Solvability Sets in Pursuit Game Problems. Informatics and Automation, Optimal control, Tome 262 (2008), pp. 8-15. http://geodesic.mathdoc.fr/item/TRSPY_2008_262_a1/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[3] Averbukh Yu. V., “K voprosu o strukture mnozhestva pozitsionnogo pogloscheniya v igrovoi zadache navedeniya”, Problemy upravleniya i informatiki, 2006, no. 3, 5–9 | MR

[4] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., Izhevsk; Moskva, 2003

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005 | MR