On the Poincaré Inequality for Periodic Composite Structures
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 301-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider periodic composite structures characterized by a periodic Borel measure equal to the sum of at least two periodic measures. For such a composite structure, verifying the Poincaré inequality may be a difficult problem. Thus, we are interested in finding conditions under which it suffices to verify the Poincaré inequality separately for each of the simpler structure components instead of verifying it for the composite structure.
@article{TRSPY_2008_261_a23,
     author = {V. V. Shumilova},
     title = {On the {Poincar\'e} {Inequality} for {Periodic} {Composite} {Structures}},
     journal = {Informatics and Automation},
     pages = {301--303},
     year = {2008},
     volume = {261},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a23/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - On the Poincaré Inequality for Periodic Composite Structures
JO  - Informatics and Automation
PY  - 2008
SP  - 301
EP  - 303
VL  - 261
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a23/
LA  - ru
ID  - TRSPY_2008_261_a23
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T On the Poincaré Inequality for Periodic Composite Structures
%J Informatics and Automation
%D 2008
%P 301-303
%V 261
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a23/
%G ru
%F TRSPY_2008_261_a23
V. V. Shumilova. On the Poincaré Inequality for Periodic Composite Structures. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 301-303. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a23/

[1] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. mat., 66:2 (2002), 81–148 | MR | Zbl

[2] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl

[3] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[4] Shumilova V. V., “O printsipe kompaktnosti dlya periodicheskikh singulyarnykh i tonkikh struktur”, Mat. zametki, 79:2 (2006), 244–253 | MR | Zbl