On the Poincaré Inequality for Periodic Composite Structures
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 301-303
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider periodic composite structures characterized by a periodic Borel measure equal to the sum of at least two periodic measures. For such a composite structure, verifying the Poincaré inequality may be a difficult problem. Thus, we are interested in finding conditions under which it suffices to verify the Poincaré inequality separately for each of the simpler structure components instead of verifying it for the composite structure.
@article{TRSPY_2008_261_a23,
author = {V. V. Shumilova},
title = {On the {Poincar\'e} {Inequality} for {Periodic} {Composite} {Structures}},
journal = {Informatics and Automation},
pages = {301--303},
year = {2008},
volume = {261},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a23/}
}
V. V. Shumilova. On the Poincaré Inequality for Periodic Composite Structures. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 301-303. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a23/
[1] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. mat., 66:2 (2002), 81–148 | MR | Zbl
[2] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl
[3] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl
[4] Shumilova V. V., “O printsipe kompaktnosti dlya periodicheskikh singulyarnykh i tonkikh struktur”, Mat. zametki, 79:2 (2006), 244–253 | MR | Zbl