Some Issues on the $p$-Laplace Equation in Cylindrical Domains
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 293-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the asymptotic behavior of the solution to equations of the $p$-Laplacian type in cylindrical domains becoming unbounded and address some issues regarding the solution in unbounded domains.
@article{TRSPY_2008_261_a22,
     author = {M. Chipot and Y. Xie},
     title = {Some {Issues} on the $p${-Laplace} {Equation} in {Cylindrical} {Domains}},
     journal = {Informatics and Automation},
     pages = {293--300},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a22/}
}
TY  - JOUR
AU  - M. Chipot
AU  - Y. Xie
TI  - Some Issues on the $p$-Laplace Equation in Cylindrical Domains
JO  - Informatics and Automation
PY  - 2008
SP  - 293
EP  - 300
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a22/
LA  - en
ID  - TRSPY_2008_261_a22
ER  - 
%0 Journal Article
%A M. Chipot
%A Y. Xie
%T Some Issues on the $p$-Laplace Equation in Cylindrical Domains
%J Informatics and Automation
%D 2008
%P 293-300
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a22/
%G en
%F TRSPY_2008_261_a22
M. Chipot; Y. Xie. Some Issues on the $p$-Laplace Equation in Cylindrical Domains. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 293-300. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a22/

[1] Barrett J. W., Liu W. B., “Finite element approximation of the parabolic $p$-Laplacian”, SIAM J. Numer. Anal., 31:2 (1994), 413–428 | DOI | MR | Zbl

[2] Chipot M., Elements of nonlinear analysis, Birkhäuser, Basel, 2000 | MR | Zbl

[3] Chipot M., $\ell$ goes to plus infinity, Birkhäuser, Basel, 2002 | MR | Zbl

[4] Chipot M., Rougirel A., “On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded”, Commun. Contemp. Math., 4:1 (2002), 15–44 | DOI | MR | Zbl

[5] Chipot M., Rougirel A., “On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions”, Discr. and Contin. Dyn. Syst. B, 1:3 (2001), 319–338 | DOI | MR | Zbl

[6] Chipot M., Rougirel A., “Remarks on the asymptotic behaviour of the solution to parabolic problems in domains becoming unbounded”, Nonlin. Anal. Theory Meth. and Appl., 47:1 (2001), 3–11 | DOI | MR | Zbl

[7] Chipot M., Xie Y., “On the asymptotic behaviour of the $p$-Laplace equation in cylinders becoming unbounded”, Nonlinear partial differential equations and their applications, Proc. Intern. Conf. (Shanghai, China, 2003), eds. N. Kenmochi, M. Ôtani, S. Zheng, Gakkotosho, Tokyo, 2004, 16–27 | MR | Zbl

[8] Liu W., Yan N., “Quasi-norm local error estimators for $p$-Laplacian”, SIAM J. Numer. Anal., 39:1 (2001), 100–127 | DOI | MR | Zbl

[9] Xie Y., On asymptotic problems in cylinders and other mathematical issues, Thes., Univ. Zürich, May 2006