$G$-Convergence of Systems of Generalized Beltrami Equations
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 268-275
Cet article a éte moissonné depuis la source Math-Net.Ru
Many problems of mathematical physics lead to problems of $G$-convergence of differential operators and, in particular, to the problem of homogenization of partial differential operators. Similar problems arise in elasticity theory, electrodynamics, and other fields of physics and mechanics. In this paper, we consider the problem of $G$-convergence of systems of Beltrami operators. We prove that the class of such systems is $G$-compact and study the properties of $G$-convergence.
@article{TRSPY_2008_261_a20,
author = {M. M. Sirazhudinov and R. M. Sirazhudinov},
title = {$G${-Convergence} of {Systems} of {Generalized} {Beltrami} {Equations}},
journal = {Informatics and Automation},
pages = {268--275},
year = {2008},
volume = {261},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a20/}
}
M. M. Sirazhudinov; R. M. Sirazhudinov. $G$-Convergence of Systems of Generalized Beltrami Equations. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 268-275. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a20/
[1] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[2] Sirazhudinov M. M., “O $G$-kompaktnosti odnogo klassa ellipticheskikh sistem pervogo poryadka”, Dif. uravneniya, 26:2 (1990), 298–305 | MR | Zbl
[3] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl