Equiconvergence of the Trigonometric Fourier Series and the Expansion in Eigenfunctions of the Sturm--Liouville Operator with a~Distribution Potential
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 249-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Sturm–Liouville operator $L=-d^2/dx^2+q(x)$ with the Dirichlet boundary conditions in the space $L_2[0,\pi]$ under the assumption that the potential $q(x)$ belongs to $W_2^{-1}[0,\pi]$. We study the problem of uniform equiconvergence on the interval $[0,\pi]$ of the expansion of a function $f(x)$ in the system of eigenfunctions and associated functions of the operator $L$ and its Fourier sine series expansion. We obtain sufficient conditions on the potential under which this equiconvergence holds for any function $f(x)$ of class $L_1$. We also consider the case of potentials belonging to the scale of Sobolev spaces $W_2^{-\theta}[0,\pi]$ with $\frac12\theta\le1$. We show that if the antiderivative $u(x)$ of the potential belongs to some space $W_2^\theta[0,\pi]$ with $0\theta\frac12$, then, for any function in the space $L_2[0,\pi]$, the rate of equiconvergence can be estimated uniformly in a ball lying in the corresponding space and containing $u(x)$. We also give an explicit estimate for the rate of equiconvergence.
@article{TRSPY_2008_261_a18,
     author = {I. V. Sadovnichaya},
     title = {Equiconvergence of the {Trigonometric} {Fourier} {Series} and the {Expansion} in {Eigenfunctions} of the {Sturm--Liouville} {Operator} with {a~Distribution} {Potential}},
     journal = {Informatics and Automation},
     pages = {249--257},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a18/}
}
TY  - JOUR
AU  - I. V. Sadovnichaya
TI  - Equiconvergence of the Trigonometric Fourier Series and the Expansion in Eigenfunctions of the Sturm--Liouville Operator with a~Distribution Potential
JO  - Informatics and Automation
PY  - 2008
SP  - 249
EP  - 257
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a18/
LA  - ru
ID  - TRSPY_2008_261_a18
ER  - 
%0 Journal Article
%A I. V. Sadovnichaya
%T Equiconvergence of the Trigonometric Fourier Series and the Expansion in Eigenfunctions of the Sturm--Liouville Operator with a~Distribution Potential
%J Informatics and Automation
%D 2008
%P 249-257
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a18/
%G ru
%F TRSPY_2008_261_a18
I. V. Sadovnichaya. Equiconvergence of the Trigonometric Fourier Series and the Expansion in Eigenfunctions of the Sturm--Liouville Operator with a~Distribution Potential. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 249-257. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a18/

[1] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | MR | Zbl

[2] Savchuk A. M., Operatory Shturma–Liuvillya s singulyarnymi potentsialami, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2001

[3] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. mat. o-va, 64 (2003), 159–219 | MR

[4] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[5] Ilin V. A., “O neobkhodimom uslovii ravnoskhodimosti s trigonometricheskim ryadom spektralnogo razlozheniya proizvolnoi summiruemoi funktsii”, Dif. uravneniya, 21:3 (1985), 371–379 | MR

[6] Vinokurov V. A., Sadovnichii V. A., “Ravnomernaya ravnoskhodimost ryada Fure po sobstvennym funktsiyam pervoi kraevoi zadachi i trigonometricheskogo ryada Fure”, DAN, 380:6 (2001), 731–735 | MR | Zbl

[7] Sadovnichaya I. V., “O ravnoskhodimosti razlozhenii v ryady po trigonometricheskoi sisteme i po sobstvennym funktsiyam operatora Shturma–Liuvillya s potentsialom-raspredeleniem”, DAN, 392:2 (2003), 170–173 | MR | Zbl

[8] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR

[9] Hryniv R. O., Mykytyuk Ya. V., “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. and Geom., 7 (2004), 119–149 | DOI | MR | Zbl

[10] Savchuk A. M., Shkalikov A. A., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | MR | Zbl

[11] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR