Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2008_261_a14, author = {A. M. Meirmanov}, title = {Nonisothermal {Filtration} and {Seismic} {Acoustics} in {Porous} {Soil:} {Thermoviscoelastic} {Equations} and {Lam\'e} {Equations}}, journal = {Informatics and Automation}, pages = {210--219}, publisher = {mathdoc}, volume = {261}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/} }
TY - JOUR AU - A. M. Meirmanov TI - Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations JO - Informatics and Automation PY - 2008 SP - 210 EP - 219 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/ LA - ru ID - TRSPY_2008_261_a14 ER -
%0 Journal Article %A A. M. Meirmanov %T Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations %J Informatics and Automation %D 2008 %P 210-219 %V 261 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/ %G ru %F TRSPY_2008_261_a14
A. M. Meirmanov. Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 210-219. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/
[1] Meirmanov A. M., Sazhenkov S. A., “Generalized solutions to linearized equations of thermoelastic solid and viscous thermofluid”, Electron. J. Diff. Equat., Pap. 41 (2007), 29 pp. | MR
[2] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Amer., 70:4 (1981), 1140–1146 | DOI | Zbl
[3] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[4] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl
[5] Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed. I”, Nonlin. Anal. Theory, Meth. and Appl., 40 (2000), 185–212 | DOI | MR | Zbl
[6] Clopeau Th., Ferrín J. L., Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed. II”, Math. and Comput. Modell., 33 (2001), 821–841 | DOI | MR | Zbl
[7] Ferrin J. L., Mikelić A., “Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid”, Math. Meth. Appl. Sci., 26 (2003), 831–859 | DOI | MR | Zbl
[8] Meirmanov A. M., Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media, E-print , 2006 arXiv:math/0611330
[9] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[10] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Intern. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[11] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl
[12] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl
[13] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. mat., 66:2 (2002), 81–148 | MR | Zbl
[14] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[15] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl