Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 210-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear system of differential equations that describes the joint motion of an incompressible elastic porous body and an incompressible fluid filling the pores. The model is very complicated because the main differential equations contain the derivatives of expressions with nondifferentiable rapidly oscillating small and large coefficients. On the basis of Nguetseng's two-scale convergence method, we derive homogenized equations in a rigorous way; depending on the geometry of pores, these are either the thermoviscoelasticity equations (for a connected porous space) or the anisotropic thermoelastic Lamé system.
@article{TRSPY_2008_261_a14,
     author = {A. M. Meirmanov},
     title = {Nonisothermal {Filtration} and {Seismic} {Acoustics} in {Porous} {Soil:} {Thermoviscoelastic} {Equations} and {Lam\'e} {Equations}},
     journal = {Informatics and Automation},
     pages = {210--219},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations
JO  - Informatics and Automation
PY  - 2008
SP  - 210
EP  - 219
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/
LA  - ru
ID  - TRSPY_2008_261_a14
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations
%J Informatics and Automation
%D 2008
%P 210-219
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/
%G ru
%F TRSPY_2008_261_a14
A. M. Meirmanov. Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lam\'e Equations. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 210-219. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a14/

[1] Meirmanov A. M., Sazhenkov S. A., “Generalized solutions to linearized equations of thermoelastic solid and viscous thermofluid”, Electron. J. Diff. Equat., Pap. 41 (2007), 29 pp. | MR

[2] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Amer., 70:4 (1981), 1140–1146 | DOI | Zbl

[3] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[5] Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed. I”, Nonlin. Anal. Theory, Meth. and Appl., 40 (2000), 185–212 | DOI | MR | Zbl

[6] Clopeau Th., Ferrín J. L., Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed. II”, Math. and Comput. Modell., 33 (2001), 821–841 | DOI | MR | Zbl

[7] Ferrin J. L., Mikelić A., “Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid”, Math. Meth. Appl. Sci., 26 (2003), 831–859 | DOI | MR | Zbl

[8] Meirmanov A. M., Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media, E-print , 2006 arXiv:math/0611330

[9] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[10] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Intern. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[11] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl

[12] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[13] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. mat., 66:2 (2002), 81–148 | MR | Zbl

[14] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[15] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl