Legendre Singularities in Systems of Implicit ODEs and Slow--Fast Dynamical Systems
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 140-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic properties of regular first integrals of systems of implicit differential equations are considered. In particular, for systems of two equations with two phase variables, a classification of generic bifurcations of integral level surfaces is described.
@article{TRSPY_2008_261_a10,
     author = {V. M. Zakalyukin and A. O. Remizov},
     title = {Legendre {Singularities} in {Systems} of {Implicit} {ODEs} and {Slow--Fast} {Dynamical} {Systems}},
     journal = {Informatics and Automation},
     pages = {140--153},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a10/}
}
TY  - JOUR
AU  - V. M. Zakalyukin
AU  - A. O. Remizov
TI  - Legendre Singularities in Systems of Implicit ODEs and Slow--Fast Dynamical Systems
JO  - Informatics and Automation
PY  - 2008
SP  - 140
EP  - 153
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a10/
LA  - ru
ID  - TRSPY_2008_261_a10
ER  - 
%0 Journal Article
%A V. M. Zakalyukin
%A A. O. Remizov
%T Legendre Singularities in Systems of Implicit ODEs and Slow--Fast Dynamical Systems
%J Informatics and Automation
%D 2008
%P 140-153
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a10/
%G ru
%F TRSPY_2008_261_a10
V. M. Zakalyukin; A. O. Remizov. Legendre Singularities in Systems of Implicit ODEs and Slow--Fast Dynamical Systems. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 140-153. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a10/

[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Udmurt. gos. un-ta, Izhevsk, 2000

[3] Arnold V. I., “Kontaktnaya struktura, relaksatsionnye kolebaniya i osobye tochki neyavnykh differentsialnykh uravnenii”, Izbrannoe – 60, Fazis, M., 1997, 391–396 | MR

[4] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[5] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR

[6] Davydov A. A., “Normalnaya forma medlennykh dvizhenii uravneniya relaksatsionnogo tipa i rassloeniya binomialnykh poverkhnostei”, Mat. sb., 132:1 (1987), 131–139 | MR | Zbl

[7] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR

[8] Ishikawa G., “Symplectic and Lagrange stabilities of open Whitney umbrellas”, Invent. math., 126:2 (1996), 215–234 | DOI | MR | Zbl

[9] Lemasurier M., “Singularities of second-order implicit differential equations: a geometrical approach”, J. Dyn. and Control Syst., 7:2 (2001), 277–298 | DOI | MR | Zbl

[10] Piliya A. D., Fedorov V. I., “Osobennosti polya elektromagnitnoi volny v kholodnoi anizotropnoi plazme s dvumernoi neodnorodnostyu”, ZhETF, 60:1 (1971), 389–399

[11] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M., L., 1947

[12] Puankare A., Izbrannye trudy, T. 3, Nauka, M., 1974

[13] Roussarie R., Modèles locaux de champs et de formes, Astérisque, 30, Soc. math. France, Paris, 1975 | MR

[14] Remizov A. O., “O tipichnykh osobykh tochkakh neyavnykh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2002, no. 5, 10–16 | MR | Zbl

[15] Remizov A. O., “Neyavnye differentsialnye uravneniya i vektornye polya s neizolirovannymi osobymi tochkami”, Mat. sb., 193:11 (2002), 105–124 | MR | Zbl

[16] Remizov A. O., “Mnogomernaya konstruktsiya Puankare i osobennosti podnyatykh polei dlya neyavnykh differentsialnykh uravnenii”, Sovr. matematika. Fund. napr., 19, 2006, 131–170 | MR

[17] Takens F., “Constrained equations; a study of implicit differential equations and their discontinuous solutions”, Structural stability, the theory of catastrophes, and applications in the sciences, Lect. Notes Math., 525, Springer, Berlin, 1976, 143–234 | MR

[18] Zakalyukin V. M., “Odno obobschenie lagranzhevykh triad”, UMN, 41:4 (1986), 180

[19] Zakalyukin V. M., “Perestroiki frontov, kaustik, zavisyaschikh ot parametra, versalnost otobrazhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 22, VINITI, M., 1983, 56–93 | MR