A Generalization of Kolmogorov's Theorem to Biorthogonal Systems
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 44-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The fundamental Kolmogorov's theorem about divergent trigonometric Fourier series is generalized to bounded biorthonormal systems defined on a separable metric space with Borel regular outer measure. Sharp lower bounds at points and on sets of positive measure are obtained for the arithmetic means of the symmetrized Lebesgue functions of biorthonormal systems defined on an arbitrary measure space. Earlier, similar results were obtained by the author for orthogonal systems on an interval.
@article{TRSPY_2008_260_a3,
     author = {S. V. Bochkarev},
     title = {A {Generalization} of {Kolmogorov's} {Theorem} to {Biorthogonal} {Systems}},
     journal = {Informatics and Automation},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a3/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - A Generalization of Kolmogorov's Theorem to Biorthogonal Systems
JO  - Informatics and Automation
PY  - 2008
SP  - 44
EP  - 56
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a3/
LA  - ru
ID  - TRSPY_2008_260_a3
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T A Generalization of Kolmogorov's Theorem to Biorthogonal Systems
%J Informatics and Automation
%D 2008
%P 44-56
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a3/
%G ru
%F TRSPY_2008_260_a3
S. V. Bochkarev. A Generalization of Kolmogorov's Theorem to Biorthogonal Systems. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 44-56. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a3/