Function Spaces of Lizorkin--Triebel Type on an Irregular Domain
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

On an irregular domain $G\subset\mathbb R^n$ of a certain type, we introduce function spaces of fractional smoothness $s>0$ that are similar to the Lizorkin–Triebel spaces. We prove embedding theorems that show how these spaces are related to the Sobolev and Lebesgue spaces $W_p^m(G)$ and $L_p(G)$.
@article{TRSPY_2008_260_a2,
     author = {O. V. Besov},
     title = {Function {Spaces} of {Lizorkin--Triebel} {Type} on an {Irregular} {Domain}},
     journal = {Informatics and Automation},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Function Spaces of Lizorkin--Triebel Type on an Irregular Domain
JO  - Informatics and Automation
PY  - 2008
SP  - 32
EP  - 43
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a2/
LA  - ru
ID  - TRSPY_2008_260_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Function Spaces of Lizorkin--Triebel Type on an Irregular Domain
%J Informatics and Automation
%D 2008
%P 32-43
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a2/
%G ru
%F TRSPY_2008_260_a2
O. V. Besov. Function Spaces of Lizorkin--Triebel Type on an Irregular Domain. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 32-43. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a2/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[2] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[3] Reshetnyak Yu. G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[4] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[6] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | MR | Zbl

[7] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Ztschr. Anal. und Anwend., 19:2 (2000), 369–380 | MR | Zbl

[8] Labutin D. A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN., 232, Nauka, M., 2001, 218–222 | MR | Zbl

[9] Besov O. V., “Prostranstva funktsii drobnoi gladkosti na neregulyarnoi oblasti”, Mat. zametki, 74:2 (2003), 163–183 | MR | Zbl

[10] Besov O. V., “Ekvivalentnye normy v prostranstvakh funktsii drobnoi gladkosti na proizvolnoi oblasti”, Mat. zametki, 74:3 (2003), 340–349 | MR | Zbl

[11] Besov O. V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Tr. MIAN, 232, Nauka, M., 2001, 72–93 | MR | Zbl