Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 297-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the embedding of a Sobolev space in Lebesgue spaces on a domain depend on the integrability and smoothness parameters of the spaces and on the geometric features of the domain. In the present paper, Sobolev embedding theorems are obtained for a class of domains with irregular boundary; this class includes the well-known classes of $\sigma$-John domains, domains with the flexible cone condition, and their anisotropic analogs.
@article{TRSPY_2008_260_a19,
     author = {Boris V. Trushin},
     title = {Sobolev {Embedding} {Theorems} for {a~Class} of {Anisotropic} {Irregular} {Domains}},
     journal = {Informatics and Automation},
     pages = {297--319},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a19/}
}
TY  - JOUR
AU  - Boris V. Trushin
TI  - Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains
JO  - Informatics and Automation
PY  - 2008
SP  - 297
EP  - 319
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a19/
LA  - ru
ID  - TRSPY_2008_260_a19
ER  - 
%0 Journal Article
%A Boris V. Trushin
%T Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains
%J Informatics and Automation
%D 2008
%P 297-319
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a19/
%G ru
%F TRSPY_2008_260_a19
Boris V. Trushin. Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 297-319. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a19/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[2] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[3] Reshetnyak Yu. G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[4] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[6] Smith W., Stegenga D. A., “Hölder domains and Poincaré domains”, Trans. Amer. Math. Soc., 319 (1990), 67–100 | DOI | MR | Zbl

[7] Hajlasz P., Koskela P., “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc. Ser. 2, 58 (1998), 425–450 | DOI | MR | Zbl

[8] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Ztschr. Anal. und Anwend., 19:2 (2000), 369–380 | MR | Zbl

[9] Labutin D. A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Mat. zametki, 61:2 (1997), 201–219 | MR | Zbl

[10] Labutin D. A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227, Nauka, M., 1999, 170–179 | MR

[11] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, DAN, 373:2 (2000), 151–154 | MR | Zbl

[12] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | MR | Zbl

[13] Labutin D. A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN, 232, Nauka, M., 2001, 218–222 | MR | Zbl

[14] Poborchii S. V., “Nekotorye kontrprimery k teoremam vlozheniya dlya prostranstv Soboleva”, Vestn. S.-Peterb. un-ta. Matematika. Mekhanika. Astronomiya, 1998, no. 4, 49–58 | MR

[15] Jessen B., Marcinkiewicz J., Zygmund A., “Note on the differentiability of multiple integrals”, Fund. math., 25 (1935), 217–234

[16] Besov O. V., “Vlozhenie prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214, Nauka, M., 1997, 25–58 | MR

[17] Kokilashvili V. M., Gabidzashvili M. A., “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i maksimalnykh funktsii”, DAN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl

[18] Gabidzashvili M. A., “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbil. mat. in-ta, 82 (1986), 25–36 | MR | Zbl

[19] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR