On the Geometric Mean Operator with Variable Limits of Integration
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 264-288
Voir la notice de l'article provenant de la source Math-Net.Ru
A new criterion for the weighted $L_p$–$L_q$ boundedness of the Hardy operator with two variable limits of integration is obtained for $0$. This criterion is applied to the characterization of the weighted $L_p$–$L_q$ boundedness of the corresponding geometric mean operator for $0$.
@article{TRSPY_2008_260_a17,
author = {V. D. Stepanov and E. P. Ushakova},
title = {On the {Geometric} {Mean} {Operator} with {Variable} {Limits} of {Integration}},
journal = {Informatics and Automation},
pages = {264--288},
publisher = {mathdoc},
volume = {260},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a17/}
}
V. D. Stepanov; E. P. Ushakova. On the Geometric Mean Operator with Variable Limits of Integration. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 264-288. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a17/