On Necessary Conditions for the Fredholm Solvability of Nonlocal Elliptic Problems
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 248-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal elliptic problems in plane domains are considered. Necessary conditions for the Fredholm solvability of such problems in weighted spaces are obtained.
@article{TRSPY_2008_260_a16,
     author = {A. L. Skubachevskii},
     title = {On {Necessary} {Conditions} for the {Fredholm} {Solvability} of {Nonlocal} {Elliptic} {Problems}},
     journal = {Informatics and Automation},
     pages = {248--263},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a16/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
TI  - On Necessary Conditions for the Fredholm Solvability of Nonlocal Elliptic Problems
JO  - Informatics and Automation
PY  - 2008
SP  - 248
EP  - 263
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a16/
LA  - ru
ID  - TRSPY_2008_260_a16
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%T On Necessary Conditions for the Fredholm Solvability of Nonlocal Elliptic Problems
%J Informatics and Automation
%D 2008
%P 248-263
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a16/
%G ru
%F TRSPY_2008_260_a16
A. L. Skubachevskii. On Necessary Conditions for the Fredholm Solvability of Nonlocal Elliptic Problems. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 248-263. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a16/

[1] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[2] Skubachevskii A. L., “Nelokalnye ellipticheskie zadachi s parametrom”, Mat. sb., 121:2 (1983), 201–210 | MR

[3] Skubachevskii A. L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Mat. sb., 129:2 (1986), 279–302 | MR

[4] Skubachevskii A. L., “Razreshimost ellipticheskikh zadach s nelokalnymi usloviyami”, DAN SSSR, 291:3 (1986), 551–555 | MR

[5] Skubachevskii A. L., “O metode srezayuschikh funktsii v teorii nelokalnykh zadach”, Dif. uravneniya, 27:1 (1991), 128–139 | MR

[6] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. mat. o-va, 16 (1967), 209–292

[7] Kishkis K. Yu., “Ob indekse zadachi A. V. Bitsadze, A. A. Samarskogo dlya garmonicheskikh funktsii”, Dif. uravneniya, 24:1 (1988), 105–110 | MR | Zbl

[8] Soldatov A. P., “Zadacha Bitsadze–Samarskogo dlya funktsii, analiticheskikh po Duglisu”, Dif. uravneniya, 41:3 (2005), 396–407 | MR | Zbl

[9] Guschin A. K., Mikhailov V. P., “O razreshimosti nelokalnykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka”, Mat. sb., 185:1 (1994), 121–160 | Zbl

[10] Galakhov E. I., Skubachevskii A. L., “O szhimayuschikh neotritsatelnykh polugruppakh s nelokalnymi usloviyami”, Mat. sb., 189:1 (1998), 45–78 | MR | Zbl

[11] Skubachevskii A. L., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh nelokalnykh kraevykh zadach”, Dif. uravneniya, 25:1 (1989), 127–136 | MR

[12] Gurevich P. L., “Solvability of nonlocal elliptic problems in Sobolev spaces. I, II”, Russ. J. Math. Phys., 10:4 (2003), 436–466 ; 11:1 (2004), 1–44 | MR | Zbl | MR | Zbl

[13] Gurevich P. L., “Obobschennye resheniya nelokalnykh ellipticheskikh zadach”, Mat. zametki, 77:5 (2005), 665–682 | MR | Zbl

[14] Mitidieri E., Pokhozhaev S. I., “Teoremy tipa Liuvillya dlya nekotorykh nelineinykh nelokalnykh zadach”, DAN, 399:6 (2004), 732–736 | MR

[15] Skubachevskii A. L., “On the stability of index of nonlocal elliptic problems”, J. Math. Anal. and Appl., 160:2 (1991), 323–341 | DOI | MR | Zbl

[16] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR

[17] Skubachevskii A. L., “Nelokalnye kraevye zadachi dlya ellipticheskikh sistem v uglakh”, Tr. sem. im. I. G. Petrovskogo, 22 (2002), 283–298