On Adaptive Estimators in Statistical Learning Theory
Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 193-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of reconstructing an unknown function from a bounded set of its values given with random errors at random points. The function is assumed to belong to a function class from a certain family.
@article{TRSPY_2008_260_a12,
     author = {S. V. Konyagin and E. D. Livshits},
     title = {On {Adaptive} {Estimators} in {Statistical} {Learning} {Theory}},
     journal = {Informatics and Automation},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a12/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - E. D. Livshits
TI  - On Adaptive Estimators in Statistical Learning Theory
JO  - Informatics and Automation
PY  - 2008
SP  - 193
EP  - 201
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a12/
LA  - ru
ID  - TRSPY_2008_260_a12
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A E. D. Livshits
%T On Adaptive Estimators in Statistical Learning Theory
%J Informatics and Automation
%D 2008
%P 193-201
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a12/
%G ru
%F TRSPY_2008_260_a12
S. V. Konyagin; E. D. Livshits. On Adaptive Estimators in Statistical Learning Theory. Informatics and Automation, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 193-201. http://geodesic.mathdoc.fr/item/TRSPY_2008_260_a12/

[1] Cucker F., Smale S., “On the mathematical foundations of learning”, Bull. Amer. Math. Soc., 39:1 (2002), 1–49 | DOI | MR | Zbl

[2] DeVore R., Kerkyacharian G., Picard D., Temlyakov V., On mathematical methods of learning, Industr. Math. Inst. Res. Repts. No 10, Univ. South Carolina, Columbia, 2004, 24 pp.

[3] DeVore R., Kerkyacharian G., Picard D., Temlyakov V., “Approximation methods for supervised learning”, Found. Comput. Math., 6:1 (2006), 3–58 | DOI | MR | Zbl

[4] Györfi L., Kohler M., Krzyzak A., Walk H., A distribution-free theory of nonparametric regression, Springer–Verlag, New York, 2002 | MR

[5] Konyagin S. V., Temlyakov V. N., “Some error estimates in learning theory”, Approximation theory, A volume dedicated to Borislav Bojanov, M. Drinov Acad. Publ. House, Sofia, 2004, 126–144 | MR

[6] Konyagin S. V., Temlyakov V. N., “The entropy in learning theory. Error estimates”, Constr. Approx., 25:1 (2007), 1–27 | DOI | MR | Zbl

[7] Poggio T., Smale S., “The mathematics of learning: Dealing with data”, Not. Amer. Math. Soc., 50:5 (2003), 537–544 | MR | Zbl

[8] Temlyakov V. N., “Optimal estimators in learning theory”, Approximation and probability, Banach Center Publ., 72, Pol. Acad. Sci., Warsaw, 2006, 341–366 | MR | Zbl

[9] Temlyakov V. N., Approximation in learning theory, Industr. Math. Inst. Res. Repts. No 05, Univ. South Carolina, Columbia, 2005, 43 pp.