Noncommutative Structures
Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 203-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for constructing noncommutative analogs of objects from classical calculus, differential geometry, topology, dynamical systems, etc. The standard (commutative) objects can be obtained from noncommutative ones by natural projections (a set of canonical homomorphisms). The approach is ideologically close to the noncommutative geometry of A. Connes but differs from it in technical details.
@article{TRSPY_2007_259_a12,
     author = {D. V. Treschev},
     title = {Noncommutative {Structures}},
     journal = {Informatics and Automation},
     pages = {203--242},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a12/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - Noncommutative Structures
JO  - Informatics and Automation
PY  - 2007
SP  - 203
EP  - 242
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a12/
LA  - ru
ID  - TRSPY_2007_259_a12
ER  - 
%0 Journal Article
%A D. V. Treschev
%T Noncommutative Structures
%J Informatics and Automation
%D 2007
%P 203-242
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a12/
%G ru
%F TRSPY_2007_259_a12
D. V. Treschev. Noncommutative Structures. Informatics and Automation, Analysis and singularities. Part 2, Tome 259 (2007), pp. 203-242. http://geodesic.mathdoc.fr/item/TRSPY_2007_259_a12/

[1] Chevalley C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl

[2] Connes A., Noncommutative geometry, Acad. Press, London, San Diego, 1994 | MR | Zbl

[3] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[4] Treschev D. V., “Kvantovye nablyudaemye: algebraicheskii aspekt”, Tr. MIAN, 250 (2005), 226–261 | Zbl