On Malliavin Measures, SLE, and~CFT
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 107-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to the 70th birthday of V. Arnol'd. The paper is motivated by emerging connections between the conformal field theory (CFT) on the one hand and stochastic Löwner evolution (SLE) processes and measures that play the role of the Haar measures for the diffeomorphism group of a circle, on the other hand. We attempt to build a framework for widely spread beliefs that SLE processes would provide a picture of phase separation in a small massive perturbation of the CFT.
@article{TRSPY_2007_258_a9,
     author = {M. L. Kontsevich and Yu. M. Sukhov},
     title = {On {Malliavin} {Measures,} {SLE,} {and~CFT}},
     journal = {Informatics and Automation},
     pages = {107--153},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a9/}
}
TY  - JOUR
AU  - M. L. Kontsevich
AU  - Yu. M. Sukhov
TI  - On Malliavin Measures, SLE, and~CFT
JO  - Informatics and Automation
PY  - 2007
SP  - 107
EP  - 153
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a9/
LA  - en
ID  - TRSPY_2007_258_a9
ER  - 
%0 Journal Article
%A M. L. Kontsevich
%A Yu. M. Sukhov
%T On Malliavin Measures, SLE, and~CFT
%J Informatics and Automation
%D 2007
%P 107-153
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a9/
%G en
%F TRSPY_2007_258_a9
M. L. Kontsevich; Yu. M. Sukhov. On Malliavin Measures, SLE, and~CFT. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 107-153. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a9/

[1] Airault H., Malliavin P., “Unitarizing probability measures for representations of Virasoro algebra”, J. math. pures et appl. Sér. 9, 80:6 (2001), 627–667 | DOI | MR | Zbl

[2] Airault H., Malliavin P., Thalmaier A., “Support of Virasoro unitarizing measures”, C. r. Math. Acad. sci. Paris, 335 (2002), 621–626 | MR | Zbl

[3] Bauer M., Bernard D., “$SLE_\kappa$ growth processes and conformal field theories”, Phys. Lett. B, 543 (2002), 135–138 | DOI | MR | Zbl

[4] Bauer R.O., Friedrich R.M., “On radial stochastic Loewner evolution in multiply connected domains”, J. Funct. Anal., 237:2 (2006), 565–588 ; arXiv: math-PR/0412060 | DOI | MR | Zbl

[5] Beilinson A.A., Schechtman V.V., “Determinant bundles and Virasoro algebras”, Commun. Math. Phys., 118:4 (1988), 651–701 | DOI | MR | Zbl

[6] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[7] Cardy J.L., “Conformal invariance and surface critical behaviour”, Nucl. Phys. B, 240:4 (1984), 514–532 | DOI | MR

[8] Cardy J.L., “Boundary conditions, fusion rules and the Verlinde formula”, Nucl. Phys. B, 324:3 (1989), 581–596 | DOI | MR

[9] Di Francesco P., Mathieu P., Senechal D., Conformal field theory, Springer, New York, 1997 | MR

[10] Friedrich R., On connections of conformal field theory and stochastic Loewner evolutions, , 2004 arXiv: math-ph/0410029 | MR

[11] Friedrich R., Kalkkinen J., “On conformal field theory and stochastic Loewner evolution”, Nucl. Phys. B, 687:3 (2004), 279–302 | DOI | MR | Zbl

[12] Getzler E., Kapranov M.M., “Modular operads”, Compos. Math., 110:1 (1998), 65–126 | DOI | MR | Zbl

[13] Kontsevich M.L., “Algebra Virasoro i prostranstva Teikhmyullera”, Funkts. analiz i ego pril., 21:2 (1987), 78–79 | MR | Zbl

[14] Kontsevich M., CFT, SLE and phase boundaries, Preprint 2003-60a, Max-Planck-Inst., 2003, (Arbeitstag. 2003); http://www.mpim-bonn.mpg.de/preprints/send?bid=2213

[15] Lawler G.F., Schramm O., Werner W., “Values of Brownian intersection exponents. I: Half-plane exponents”, Acta math., 187:2 (2001), 237–273 | DOI | MR | Zbl

[16] Lawler G.F., Schramm O., Werner W., “Values of Brownian intersection exponents. II: Plane exponents”, Acta math., 187:2 (2001), 275–308 | DOI | MR | Zbl

[17] Lawler G.F., Schramm O., Werner W., “Values of Brownian intersection exponents. III: Two-sided exponents”, Ann. Inst. H. Poincaré. Probab. et statist., 38:1 (2002), 109–123 | DOI | MR | Zbl

[18] Lawler G., Schramm O., Werner W., “Conformal restriction: The chordal case”, J. Amer. Math. Soc., 16:4 (2003), 917–955 | DOI | MR | Zbl

[19] Lawler G.F., Werner W., “The Brownian loop soup”, Probab. Theory and Relat. Fields, 128:4 (2004), 565–588 | DOI | MR | Zbl

[20] Malliavin P., “The canonic diffusion above the diffeomorphism group of the circle”, C. r. Acad. sci. Paris Sér. 1, 329:4 (1999), 325–329 | MR | Zbl

[21] P. Deligne, P. Etingof, D.S. Freed, L.C. Jeffrey, D. Kazhdan, J.W. Morgan, D.R. Morrison, E. Witten (eds.), Quantum fields and strings: A course for mathematicians, 1, 2, Amer. Math. Soc., Providence (RI), 1999

[22] Rohde S., Schramm O., “Basic properties of SLE”, Ann. Math. Ser. 2, 161:2 (2005), 883–924 | DOI | MR | Zbl

[23] Schiffer M., “Hadamard's formula and variation of domain-functions”, Amer. J. Math., 68 (1946), 417–448 | DOI | MR | Zbl

[24] Schiffer M., Spencer D.C., Functionals of finite Riemann surfaces, Princeton Univ. Press, Princeton, 1954 | MR | Zbl

[25] Schramm O., “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118 (2000), 221–288 | DOI | MR | Zbl

[26] Schramm O., “Conformally invariant scaling limits: An overview and a collection of problems”, Proc. Intern. Congr. Math., Madrid, 2006, 1, Eur. Math. Soc., Zürich, 2007, 513–544 | MR

[27] Strebel K., Quadratic differentials, Springer, Berlin, 1984 | MR

[28] Werner W., “SLEs as boundaries of clusters of Brownian loops”, C. r. Math. Acad. sci. Paris, 337:7 (2003), 481–486 | MR | Zbl

[29] Werner W., Lectures on probability theory and statistics, Lect. Notes Math., 1840, Springer, Berlin, 2004 | MR

[30] Werner W., “Conformal restriction and related questions”, Probab. Surv., 2 (2005), 145–190 ; arXiv: math.PR/0307353 | DOI | MR

[31] Werner W., The conformally invariant measure on self-avoiding loops, , 2005 arXiv: math.PR/0511605 | MR

[32] Werner W., “Conformal restriction properties”, Proc. Intern. Congr. Math., Madrid, 2006, 3, Eur. Math. Soc., Zürich, 2007, 741–762 | MR