Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2007_258_a9, author = {M. L. Kontsevich and Yu. M. Sukhov}, title = {On {Malliavin} {Measures,} {SLE,} {and~CFT}}, journal = {Informatics and Automation}, pages = {107--153}, publisher = {mathdoc}, volume = {258}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a9/} }
M. L. Kontsevich; Yu. M. Sukhov. On Malliavin Measures, SLE, and~CFT. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 107-153. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a9/
[1] Airault H., Malliavin P., “Unitarizing probability measures for representations of Virasoro algebra”, J. math. pures et appl. Sér. 9, 80:6 (2001), 627–667 | DOI | MR | Zbl
[2] Airault H., Malliavin P., Thalmaier A., “Support of Virasoro unitarizing measures”, C. r. Math. Acad. sci. Paris, 335 (2002), 621–626 | MR | Zbl
[3] Bauer M., Bernard D., “$SLE_\kappa$ growth processes and conformal field theories”, Phys. Lett. B, 543 (2002), 135–138 | DOI | MR | Zbl
[4] Bauer R.O., Friedrich R.M., “On radial stochastic Loewner evolution in multiply connected domains”, J. Funct. Anal., 237:2 (2006), 565–588 ; arXiv: math-PR/0412060 | DOI | MR | Zbl
[5] Beilinson A.A., Schechtman V.V., “Determinant bundles and Virasoro algebras”, Commun. Math. Phys., 118:4 (1988), 651–701 | DOI | MR | Zbl
[6] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[7] Cardy J.L., “Conformal invariance and surface critical behaviour”, Nucl. Phys. B, 240:4 (1984), 514–532 | DOI | MR
[8] Cardy J.L., “Boundary conditions, fusion rules and the Verlinde formula”, Nucl. Phys. B, 324:3 (1989), 581–596 | DOI | MR
[9] Di Francesco P., Mathieu P., Senechal D., Conformal field theory, Springer, New York, 1997 | MR
[10] Friedrich R., On connections of conformal field theory and stochastic Loewner evolutions, , 2004 arXiv: math-ph/0410029 | MR
[11] Friedrich R., Kalkkinen J., “On conformal field theory and stochastic Loewner evolution”, Nucl. Phys. B, 687:3 (2004), 279–302 | DOI | MR | Zbl
[12] Getzler E., Kapranov M.M., “Modular operads”, Compos. Math., 110:1 (1998), 65–126 | DOI | MR | Zbl
[13] Kontsevich M.L., “Algebra Virasoro i prostranstva Teikhmyullera”, Funkts. analiz i ego pril., 21:2 (1987), 78–79 | MR | Zbl
[14] Kontsevich M., CFT, SLE and phase boundaries, Preprint 2003-60a, Max-Planck-Inst., 2003, (Arbeitstag. 2003); http://www.mpim-bonn.mpg.de/preprints/send?bid=2213
[15] Lawler G.F., Schramm O., Werner W., “Values of Brownian intersection exponents. I: Half-plane exponents”, Acta math., 187:2 (2001), 237–273 | DOI | MR | Zbl
[16] Lawler G.F., Schramm O., Werner W., “Values of Brownian intersection exponents. II: Plane exponents”, Acta math., 187:2 (2001), 275–308 | DOI | MR | Zbl
[17] Lawler G.F., Schramm O., Werner W., “Values of Brownian intersection exponents. III: Two-sided exponents”, Ann. Inst. H. Poincaré. Probab. et statist., 38:1 (2002), 109–123 | DOI | MR | Zbl
[18] Lawler G., Schramm O., Werner W., “Conformal restriction: The chordal case”, J. Amer. Math. Soc., 16:4 (2003), 917–955 | DOI | MR | Zbl
[19] Lawler G.F., Werner W., “The Brownian loop soup”, Probab. Theory and Relat. Fields, 128:4 (2004), 565–588 | DOI | MR | Zbl
[20] Malliavin P., “The canonic diffusion above the diffeomorphism group of the circle”, C. r. Acad. sci. Paris Sér. 1, 329:4 (1999), 325–329 | MR | Zbl
[21] P. Deligne, P. Etingof, D.S. Freed, L.C. Jeffrey, D. Kazhdan, J.W. Morgan, D.R. Morrison, E. Witten (eds.), Quantum fields and strings: A course for mathematicians, 1, 2, Amer. Math. Soc., Providence (RI), 1999
[22] Rohde S., Schramm O., “Basic properties of SLE”, Ann. Math. Ser. 2, 161:2 (2005), 883–924 | DOI | MR | Zbl
[23] Schiffer M., “Hadamard's formula and variation of domain-functions”, Amer. J. Math., 68 (1946), 417–448 | DOI | MR | Zbl
[24] Schiffer M., Spencer D.C., Functionals of finite Riemann surfaces, Princeton Univ. Press, Princeton, 1954 | MR | Zbl
[25] Schramm O., “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118 (2000), 221–288 | DOI | MR | Zbl
[26] Schramm O., “Conformally invariant scaling limits: An overview and a collection of problems”, Proc. Intern. Congr. Math., Madrid, 2006, 1, Eur. Math. Soc., Zürich, 2007, 513–544 | MR
[27] Strebel K., Quadratic differentials, Springer, Berlin, 1984 | MR
[28] Werner W., “SLEs as boundaries of clusters of Brownian loops”, C. r. Math. Acad. sci. Paris, 337:7 (2003), 481–486 | MR | Zbl
[29] Werner W., Lectures on probability theory and statistics, Lect. Notes Math., 1840, Springer, Berlin, 2004 | MR
[30] Werner W., “Conformal restriction and related questions”, Probab. Surv., 2 (2005), 145–190 ; arXiv: math.PR/0307353 | DOI | MR
[31] Werner W., The conformally invariant measure on self-avoiding loops, , 2005 arXiv: math.PR/0511605 | MR
[32] Werner W., “Conformal restriction properties”, Proc. Intern. Congr. Math., Madrid, 2006, 3, Eur. Math. Soc., Zürich, 2007, 741–762 | MR