Welschinger Invariants of Toric Del Pezzo Surfaces with Nonstandard Real Structures
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 227-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Welschinger invariants of real rational algebraic surfaces are natural analogs of the Gromov–Witten invariants, and they estimate from below the number of real rational curves passing through prescribed configurations of points. We establish a tropical formula for the Welschinger invariants of four toric Del Pezzo surfaces equipped with a nonstandard real structure. Such a formula for real toric Del Pezzo surfaces with a standard real structure (i.e., naturally compatible with the toric structure) was established by Mikhalkin and the author. As a consequence we prove that for any real ample divisor $D$ on a surface $\Sigma$ under consideration, through any generic configuration of $c_1(\Sigma )D-1$ generic real points, there passes a real rational curve belonging to the linear system $|D|$.
@article{TRSPY_2007_258_a14,
     author = {E. I. Shustin},
     title = {Welschinger {Invariants} of {Toric} {Del} {Pezzo} {Surfaces} with {Nonstandard} {Real} {Structures}},
     journal = {Informatics and Automation},
     pages = {227--255},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a14/}
}
TY  - JOUR
AU  - E. I. Shustin
TI  - Welschinger Invariants of Toric Del Pezzo Surfaces with Nonstandard Real Structures
JO  - Informatics and Automation
PY  - 2007
SP  - 227
EP  - 255
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a14/
LA  - en
ID  - TRSPY_2007_258_a14
ER  - 
%0 Journal Article
%A E. I. Shustin
%T Welschinger Invariants of Toric Del Pezzo Surfaces with Nonstandard Real Structures
%J Informatics and Automation
%D 2007
%P 227-255
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a14/
%G en
%F TRSPY_2007_258_a14
E. I. Shustin. Welschinger Invariants of Toric Del Pezzo Surfaces with Nonstandard Real Structures. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 227-255. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a14/

[1] Comessatti A., “Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale”, Math. Ann., 73 (1912), 1–72 | DOI | MR | Zbl

[2] Comessatti A., “Sulla connessione delle superficie razianali reali”, Ann. Mat. Ser. 3, 23 (1914), 215–283

[3] Diaz S., Harris J., “Ideals associated to deformations of singular plane curves”, Trans. Amer. Math. Soc., 309:2 (1988), 433–468 | DOI | MR | Zbl

[4] Einsiedler M., Kapranov M., Lind D., “Non-archimedean amoebas and tropical varieties”, J. reine und angew. Math., 601 (2006), 139–157 ; arXiv: math.AG/0408311 | MR | Zbl

[5] Itenberg I., “Amibes des variétés algébriques et dénombrement de courbes (d'après G. Mikhalkin)”, Séminaire Bourbaki, Volume 2002/2003 Exp. 921, Astérisque, 294, Soc. math. France, Paris, 2004, 335–361 | MR | Zbl

[6] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariant and enumeration of real rational curves”, Intern. Math. Res. Not., 2003:49 (2003), 2639–2653 | DOI | MR | Zbl

[7] Itenberg I., Kharlamov V., Shustin E., Appendix to “Welschinger invariant and enumeration of real rational curves”, , 2003 arXiv: math.AG/0312142 | MR

[8] Itenberg I.V., Kharlamov V.M., Shustin E.I., “Logarifmicheskaya ekvivalentnost invariantov Velshenzhe i Gromova–Vittena”, UMN, 59:6 (2004), 85–110 | MR | Zbl

[9] Itenberg I., Kharlamov V., Shustin E., “New cases of logarithmic equivalence of Welschinger and Gromov–Witten invariants”, Tr. MIAN, 258, 2007, 70–78 | MR | Zbl

[10] Kollár J., Real algebraic surfaces, , 1997 arXiv: alg-geom/9712003 | MR

[11] Mikhalkin G., “Counting curves via lattice paths in polygons”, C. r. Math. Acad. sci. Paris, 336:8 (2003), 629–634 | MR | Zbl

[12] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl

[13] Nobile A., “On specialization of curves. I”, Trans. Amer. Math. Soc., 282:2 (1984), 739–748 | DOI | MR | Zbl

[14] Richter-Gebert J., Sturmfels B., Theobald T., “First steps in tropical geometry”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence (RI), 2005, 289–317 | MR | Zbl

[15] Shustin E., “A tropical approach to enumerative geometry”, Algebra i analiz, 17:2 (2005), 170–214 | MR

[16] Shustin E., “A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces”, J. Alg. Geom., 15:2 (2006), 285–322 | MR | Zbl

[17] Welschinger J.-Y., “Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry”, Invent. math., 162:1 (2005), 195–234 | DOI | MR | Zbl