Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2007_258_a14, author = {E. I. Shustin}, title = {Welschinger {Invariants} of {Toric} {Del} {Pezzo} {Surfaces} with {Nonstandard} {Real} {Structures}}, journal = {Informatics and Automation}, pages = {227--255}, publisher = {mathdoc}, volume = {258}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a14/} }
E. I. Shustin. Welschinger Invariants of Toric Del Pezzo Surfaces with Nonstandard Real Structures. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 227-255. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a14/
[1] Comessatti A., “Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale”, Math. Ann., 73 (1912), 1–72 | DOI | MR | Zbl
[2] Comessatti A., “Sulla connessione delle superficie razianali reali”, Ann. Mat. Ser. 3, 23 (1914), 215–283
[3] Diaz S., Harris J., “Ideals associated to deformations of singular plane curves”, Trans. Amer. Math. Soc., 309:2 (1988), 433–468 | DOI | MR | Zbl
[4] Einsiedler M., Kapranov M., Lind D., “Non-archimedean amoebas and tropical varieties”, J. reine und angew. Math., 601 (2006), 139–157 ; arXiv: math.AG/0408311 | MR | Zbl
[5] Itenberg I., “Amibes des variétés algébriques et dénombrement de courbes (d'après G. Mikhalkin)”, Séminaire Bourbaki, Volume 2002/2003 Exp. 921, Astérisque, 294, Soc. math. France, Paris, 2004, 335–361 | MR | Zbl
[6] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariant and enumeration of real rational curves”, Intern. Math. Res. Not., 2003:49 (2003), 2639–2653 | DOI | MR | Zbl
[7] Itenberg I., Kharlamov V., Shustin E., Appendix to “Welschinger invariant and enumeration of real rational curves”, , 2003 arXiv: math.AG/0312142 | MR
[8] Itenberg I.V., Kharlamov V.M., Shustin E.I., “Logarifmicheskaya ekvivalentnost invariantov Velshenzhe i Gromova–Vittena”, UMN, 59:6 (2004), 85–110 | MR | Zbl
[9] Itenberg I., Kharlamov V., Shustin E., “New cases of logarithmic equivalence of Welschinger and Gromov–Witten invariants”, Tr. MIAN, 258, 2007, 70–78 | MR | Zbl
[10] Kollár J., Real algebraic surfaces, , 1997 arXiv: alg-geom/9712003 | MR
[11] Mikhalkin G., “Counting curves via lattice paths in polygons”, C. r. Math. Acad. sci. Paris, 336:8 (2003), 629–634 | MR | Zbl
[12] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl
[13] Nobile A., “On specialization of curves. I”, Trans. Amer. Math. Soc., 282:2 (1984), 739–748 | DOI | MR | Zbl
[14] Richter-Gebert J., Sturmfels B., Theobald T., “First steps in tropical geometry”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence (RI), 2005, 289–317 | MR | Zbl
[15] Shustin E., “A tropical approach to enumerative geometry”, Algebra i analiz, 17:2 (2005), 170–214 | MR
[16] Shustin E., “A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces”, J. Alg. Geom., 15:2 (2006), 285–322 | MR | Zbl
[17] Welschinger J.-Y., “Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry”, Invent. math., 162:1 (2005), 195–234 | DOI | MR | Zbl