On the Coexistence of Corank~1 Multisingularities of a~Stable Smooth Mapping of Equidimensional Manifolds
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 201-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topology of stable smooth mappings of smooth closed real manifolds of the same dimension. We calculate all universal linear relations between the Euler characteristics of the manifolds of multisingularities of mappings that have only corank 1 singularities.
@article{TRSPY_2007_258_a13,
     author = {V. D. Sedykh},
     title = {On the {Coexistence} of {Corank~1} {Multisingularities} of {a~Stable} {Smooth} {Mapping} of {Equidimensional} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {201--226},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a13/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On the Coexistence of Corank~1 Multisingularities of a~Stable Smooth Mapping of Equidimensional Manifolds
JO  - Informatics and Automation
PY  - 2007
SP  - 201
EP  - 226
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a13/
LA  - ru
ID  - TRSPY_2007_258_a13
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On the Coexistence of Corank~1 Multisingularities of a~Stable Smooth Mapping of Equidimensional Manifolds
%J Informatics and Automation
%D 2007
%P 201-226
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a13/
%G ru
%F TRSPY_2007_258_a13
V. D. Sedykh. On the Coexistence of Corank~1 Multisingularities of a~Stable Smooth Mapping of Equidimensional Manifolds. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 201-226. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a13/

[1] Arnold V.I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR

[2] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[3] Arnold V.I., Vasilev V.A., Goryunov V.V., Lyashko O.V., Osobennosti. I. Lokalnaya i globalnaya teoriya, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 6, VINITI, M., 1988 | MR

[4] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | MR

[5] Kazaryan M.E., “Multiosobennosti, kobordizmy i ischislitelnaya geometriya”, UMN, 58:4 (2003), 29–88 | MR | Zbl

[6] Mazer Dzh., “Stratifikatsii i otobrazheniya”, UMN, 27:5 (1972), 85–118 | MR

[7] Sedykh V.D., “O topologii obraza ustoichivogo gladkogo otobrazheniya s osobennostyami koranga 1”, DAN, 395:4 (2004), 459–463 | MR | Zbl

[8] Sedykh V.D., “Osobennosti koranga 1 ustoichivykh gladkikh otobrazhenii i osobye kasatelnye giperploskosti prostranstvennoi krivoi”, Mat. zametki, 78:3 (2005), 413–427 | MR | Zbl

[9] Sedykh V.D., “Razreshenie osobennostei koranga 1 obraza ustoichivogo gladkogo otobrazheniya v prostranstvo bolshei razmernosti”, Izv. RAN. Ser. mat., 71:2 (2007), 173–222 | MR | Zbl

[10] Banchoff Th., Gaffney T., McCrory C., “Counting tritangent planes of space curves”, Topology, 24:1 (1985), 15–23 | DOI | MR | Zbl

[11] Freedman M.H., “Planes triply tangent to curves with nonvanishing torsion”, Topology, 19:1 (1980), 1–8 | DOI | MR | Zbl

[12] Kleiman S.L., “Multiple-point formulas. I: Iteration”, Acta math., 147:1–2 (1981), 13–49 | DOI | MR | Zbl

[13] Levine H.I., “The singularities $S_1^q$”, Ill. J. Math., 8 (1964), 152–168 | MR | Zbl

[14] Lojasiewicz S., Ensembles semi-analitiques, IHES, Bures-sur-Yvette, 1965

[15] Marar W.L., Mond D., “Multiple-point schemes for corank 1 maps”, J. London Math. Soc. Ser. 2, 39:3 (1989), 553–567 | DOI | MR | Zbl

[16] Morin B., “Formes canoniques des singularités d'une application différentiable”, C. r. Acad. sci. Paris. Sér. 1, 260 (1965), 5662–5665 | MR | Zbl

[17] Romero Fuster M.C., “Sphere stratifications and the Gauss map”, Proc. Roy. Soc. Edinburgh A, 95 (1983), 115–136 | MR | Zbl

[18] Sedykh V.D., “The topology of corank 1 multi-singularities of stable smooth mappings of equidimensional manifolds”, C. r. Math. Acad. sci. Paris, 340:6 (2005), 441–444 | MR | Zbl

[19] Szücs A., “Multiple points of singular maps”, Math. Proc. Cambridge Philos. Soc., 100 (1986), 331–346 | DOI | MR | Zbl

[20] Thom R., “Les singularités des applications différentiables”, Ann. Inst. Fourier, 6 (1955–1956), 43–87 | MR

[21] Wall C.T.C., “Stratified sets: a survey”, Lect. Notes Math., 192, 1971, 133–140