Hyperbolic Carath\'eodory Conjecture
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 185-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quadratic point on a surface in $\mathbb R\mathrm P^3$ is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse–Wilczynski theorem.
@article{TRSPY_2007_258_a12,
     author = {S. L. Tabachnikov and V. Yu. Ovsienko},
     title = {Hyperbolic {Carath\'eodory} {Conjecture}},
     journal = {Informatics and Automation},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/}
}
TY  - JOUR
AU  - S. L. Tabachnikov
AU  - V. Yu. Ovsienko
TI  - Hyperbolic Carath\'eodory Conjecture
JO  - Informatics and Automation
PY  - 2007
SP  - 185
EP  - 200
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/
LA  - en
ID  - TRSPY_2007_258_a12
ER  - 
%0 Journal Article
%A S. L. Tabachnikov
%A V. Yu. Ovsienko
%T Hyperbolic Carath\'eodory Conjecture
%J Informatics and Automation
%D 2007
%P 185-200
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/
%G en
%F TRSPY_2007_258_a12
S. L. Tabachnikov; V. Yu. Ovsienko. Hyperbolic Carath\'eodory Conjecture. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 185-200. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/

[1] Arnold V.I., “Razvetvlennoe nakrytie $\mathbf{CP}^2\to S^4$, giperbolichnost i proektivnaya topologiya”, Sib. mat. zhurn., 29:5 (1988), 36–47 | MR

[2] Arnold V.I., “Topologicheskie problemy teorii rasprostraneniya voln”, UMN, 51:1 (1996), 3–50

[3] Arnold V.I., “Zamechaniya o parabolicheskikh krivykh na poverkhnostyakh i mnogomernoi teorii Mebiusa–Shturma”, Funkts. analiz i ego pril., 31:4 (1997), 3–18 | MR | Zbl

[4] Arnold V.I., “Topologicheskie voprosy teorii asimptoticheskikh krivykh”, Tr. MIAN, 225, 1999, 11–20 | MR | Zbl

[5] Asimov D., “Average Gaussian curvature of leaves of foliations”, Bull. Amer. Math. Soc., 84 (1978), 131–133 | DOI | MR | Zbl

[6] Degtyarev A.I., Kharlamov V.M., “Topologicheskie svoistva veschestvennykh algebraicheskikh mnogoobrazii: du côté de chez Rokhlin”, UMN, 55:4 (2000), 129–212 | MR | Zbl

[7] Fubini G., Čech E., Introduction à la géométrie projective différentielle des surfaces, Gauthier-Villars, Paris, 1931

[8] Landis E.E., “Tangentsialnye osobennosti”, Funkts. analiz i ego pril., 15:2 (1981), 36–49 | MR | Zbl

[9] Lane E.P., A treatise on projective differential geometry, Univ. Chicago Press, Chicago, 1942 | MR | Zbl

[10] Ovsienko V., Tabachnikov S., Projective differential geometry, old and new: From Schwarzian derivative to cohomology of diffeomorphism groups, Cambridge Univ. Press, Cambridge, 2005 | MR

[11] Panov D.A., “Spetsialnye tochki poverkhnostei v trekhmernom proektivnom prostranstve”, Funkts. analiz i ego pril., 34:4 (2000), 49–63 | MR | Zbl

[12] Platonova O.A., “Osobennosti vzaimnogo raspolozheniya poverkhnosti i pryamoi”, UMN, 36:1 (1981), 221–222 | MR | Zbl

[13] Pushkar P.E., Chekanov Yu.V., “Kombinatorika frontov lezhandrovykh zatseplenii i 4-gipotezy Arnolda”, UMN, 60:1 (2005), 99–154 | MR | Zbl

[14] Salmon G., A treatise on the analytic geometry of three dimensions, Chelsea Publ., New York, 1927 | MR

[15] Segre B., The non-singular cubic surfaces, Oxford Univ. Press, Oxford, 1942 | MR | Zbl

[16] Uribe-Vargas R., “A projective invariant for swallowtails and godrons, and global theorems on the flecnodal curve”, Moscow Math. J., 6 (2006), 731–768 | MR | Zbl

[17] Wilczynski E.J., “General theory of curves on ruled surfaces”, Trans. Amer. Math. Soc., 6 (1905), 75–82 | DOI | MR | Zbl

[18] Wilczynski E.J., “Projective differential geometry of curved surfaces. I–V”, Trans. Amer. Math. Soc., 8 (1907), 233–260 ; ibid 9 (1908), 79–120, 293–315 ; ibid 10 (1909), 176–200, 279–296 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl