Hyperbolic Carath\'eodory Conjecture
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 185-200

Voir la notice de l'article provenant de la source Math-Net.Ru

A quadratic point on a surface in $\mathbb R\mathrm P^3$ is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse–Wilczynski theorem.
@article{TRSPY_2007_258_a12,
     author = {S. L. Tabachnikov and V. Yu. Ovsienko},
     title = {Hyperbolic {Carath\'eodory} {Conjecture}},
     journal = {Informatics and Automation},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/}
}
TY  - JOUR
AU  - S. L. Tabachnikov
AU  - V. Yu. Ovsienko
TI  - Hyperbolic Carath\'eodory Conjecture
JO  - Informatics and Automation
PY  - 2007
SP  - 185
EP  - 200
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/
LA  - en
ID  - TRSPY_2007_258_a12
ER  - 
%0 Journal Article
%A S. L. Tabachnikov
%A V. Yu. Ovsienko
%T Hyperbolic Carath\'eodory Conjecture
%J Informatics and Automation
%D 2007
%P 185-200
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/
%G en
%F TRSPY_2007_258_a12
S. L. Tabachnikov; V. Yu. Ovsienko. Hyperbolic Carath\'eodory Conjecture. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 185-200. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a12/