On a~New Form of Bethe Ansatz Equations and Separation of Variables in the $\mathfrak{sl}_3$ Gaudin model
Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 162-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new form of Bethe ansatz equations is introduced. A version of a separation of variables for the quantum $\mathfrak{sl}_3$ Gaudin model is presented.
@article{TRSPY_2007_258_a11,
     author = {E. E. Mukhin and V. Schechtman and V. O. Tarasov and A. N. Varchenko},
     title = {On {a~New} {Form} of {Bethe} {Ansatz} {Equations} and {Separation} of {Variables} in the $\mathfrak{sl}_3$ {Gaudin} model},
     journal = {Informatics and Automation},
     pages = {162--184},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a11/}
}
TY  - JOUR
AU  - E. E. Mukhin
AU  - V. Schechtman
AU  - V. O. Tarasov
AU  - A. N. Varchenko
TI  - On a~New Form of Bethe Ansatz Equations and Separation of Variables in the $\mathfrak{sl}_3$ Gaudin model
JO  - Informatics and Automation
PY  - 2007
SP  - 162
EP  - 184
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a11/
LA  - en
ID  - TRSPY_2007_258_a11
ER  - 
%0 Journal Article
%A E. E. Mukhin
%A V. Schechtman
%A V. O. Tarasov
%A A. N. Varchenko
%T On a~New Form of Bethe Ansatz Equations and Separation of Variables in the $\mathfrak{sl}_3$ Gaudin model
%J Informatics and Automation
%D 2007
%P 162-184
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a11/
%G en
%F TRSPY_2007_258_a11
E. E. Mukhin; V. Schechtman; V. O. Tarasov; A. N. Varchenko. On a~New Form of Bethe Ansatz Equations and Separation of Variables in the $\mathfrak{sl}_3$ Gaudin model. Informatics and Automation, Analysis and singularities. Part 1, Tome 258 (2007), pp. 162-184. http://geodesic.mathdoc.fr/item/TRSPY_2007_258_a11/

[1] Babujian H.M., “Off-shell Bethe ansatz equations and $N$-point correlators in the $\mathrm{SU}(2)$ WZNW theory”, J. Phys. A: Math. and Gen., 26:23 (1993), 6981–6990 | DOI | MR | Zbl

[2] Babujian H.M., Flume R., “Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik–Zamolodchikov equations”, Mod. Phys. Lett. A, 9:22 (1994), 2029–2039 | DOI | MR | Zbl

[3] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[4] Kac V.G., Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR

[5] Knizhnik V.G., Zamolodchikov A.B., “Current algebra and Wess–Zumino model in two dimensions”, Nucl. Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl

[6] Mukhin E., Tarasov V., Varchenko A., Higher Lame equations and critical points of master functions, , 2006 arXiv: math.CA/0601703 | MR

[7] Mukhin E., Varchenko A., “Critical points of master functions and flag varieties”, Commun. Contemp. Math., 6:1 (2004), 111–163 | DOI | MR | Zbl

[8] Reshetikhin N., Varchenko A., “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, topology and physics for Raoul Bott, Intern. Press, Cambridge (MA), 1995, 293–322 ; arXiv: hep-th/9402126 | MR

[9] Rimányi R., Stevens L., Varchenko A., “Combinatorics of rational functions and Poincaré–Birkhoff–Witt expansions of the canonical $U(\mathfrak n_-)$-valued differential form”, Ann. Comb., 9:1 (2005), 57–74 ; arXiv: math.CO/0407101 | DOI | MR | Zbl

[10] Schechtman V.V., Varchenko A.N., “Arrangements of hyperplanes and Lie algebra homology”, Invent. math., 106 (1991), 139–194 | DOI | MR | Zbl

[11] Sklyanin E.K., “Razdelenie peremennykh v modeli Godena”, Zap. nauch. sem. LOMI, 164 (1987), 151–169 | MR

[12] Stieltjes T.J., “Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé”, Acta math., 6 (1885), 321–326 | DOI | MR

[13] Stoyanovsky A., A relation between the Knizhnik–Zamolodchikov and Belavin–Polyakov–Zamolodchikov systems of partial differential equations, , 2000 arXiv: math-ph/0012013

[14] Szegö G., Orthogonal polynomials, Amer. Math. Soc., New York, 1939 | Zbl

[15] Varchenko A., Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Adv. Ser. Math. Phys., 21, World Sci., Singapore, 1995. | MR | Zbl