Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays
Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 148-171

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions for the hyperbolicity of periodic solutions to nonlinear functional differential equations in terms of the eigenvalues of the monodromy operator. The eigenvalue problem for the monodromy operator is reduced to a boundary value problem for a system of ordinary differential equations with a spectral parameter. This makes it possible to construct a characteristic function. We prove that the zeros of this function coincide with the eigenvalues of the monodromy operator and, under certain additional conditions, the multiplicity of a zero of the characteristic function coincides with the algebraic multiplicity of the corresponding eigenvalue.
@article{TRSPY_2007_256_a7,
     author = {N. B. Zhuravlev and A. L. Skubachevskii},
     title = {Hyperbolicity of {Periodic} {Solutions} of {Functional} {Differential} {Equations} with {Several} {Delays}},
     journal = {Informatics and Automation},
     pages = {148--171},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a7/}
}
TY  - JOUR
AU  - N. B. Zhuravlev
AU  - A. L. Skubachevskii
TI  - Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays
JO  - Informatics and Automation
PY  - 2007
SP  - 148
EP  - 171
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a7/
LA  - ru
ID  - TRSPY_2007_256_a7
ER  - 
%0 Journal Article
%A N. B. Zhuravlev
%A A. L. Skubachevskii
%T Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays
%J Informatics and Automation
%D 2007
%P 148-171
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a7/
%G ru
%F TRSPY_2007_256_a7
N. B. Zhuravlev; A. L. Skubachevskii. Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays. Informatics and Automation, Dynamical systems and optimization, Tome 256 (2007), pp. 148-171. http://geodesic.mathdoc.fr/item/TRSPY_2007_256_a7/