Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces
Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145
Voir la notice de l'article provenant de la source Math-Net.Ru
For the complete Sobolev scale and the gradient–divergence scale, decompositions into direct sums of solenoidal and potential subspaces are found. A smoothing property of solenoidal factorization is proved. Projectors onto the subspaces of solenoidal and potential functions are described.
@article{TRSPY_2006_255_a9,
author = {Yu. A. Dubinskii},
title = {Decompositions of the {Sobolev} {Scale} and {Gradient--Divergence} {Scale} into the {Sum} of {Solenoidal} and {Potential} {Subspaces}},
journal = {Informatics and Automation},
pages = {136--145},
publisher = {mathdoc},
volume = {255},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a9/}
}
TY - JOUR AU - Yu. A. Dubinskii TI - Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces JO - Informatics and Automation PY - 2006 SP - 136 EP - 145 VL - 255 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a9/ LA - ru ID - TRSPY_2006_255_a9 ER -
%0 Journal Article %A Yu. A. Dubinskii %T Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces %J Informatics and Automation %D 2006 %P 136-145 %V 255 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a9/ %G ru %F TRSPY_2006_255_a9
Yu. A. Dubinskii. Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a9/