Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_255_a1, author = {F. G. Avkhadiev}, title = {Hardy-Type {Inequalities} on {Planar} and {Spatial} {Open} {Sets}}, journal = {Informatics and Automation}, pages = {8--18}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a1/} }
F. G. Avkhadiev. Hardy-Type Inequalities on Planar and Spatial Open Sets. Informatics and Automation, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 8-18. http://geodesic.mathdoc.fr/item/TRSPY_2006_255_a1/
[1] Ahlfors L.V., Conformal invariants: Topics in geometric function theory, McGraw-Hill, New York, 1973. | MR | Zbl
[2] Avkhadiev F.G., “Reshenie obobschennoi zadachi Sen-Venana”, Mat. sb., 189:12 (1998), 3–12 | MR | Zbl
[3] Avkhadiev F.G., “Konformno invariantnye neravenstva matematicheskoi fiziki”, Naukoemkie tekhnologii, 5:4 (2004), 47–51 | MR
[4] Avkhadiev F.G., “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl
[5] Avkhadiev F.G., Wirths K.-J., A theorem of Teichmüller, uniformly perfect sets and punishing factors, Preprint, Tech. Univ. Braunschweig, 2005; http://www.iaa.tu-bs.de/wirths/preprints/teich.ps
[6] Bandle C., Flucher M., “Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U=U^{\frac{n+2}{n-2}}$”, SIAM Rev., 38:2 (1996), 191–238 | DOI | MR | Zbl
[7] Beardon A.F., Pommerenke Ch., “The Poincaré metric of plane domains”, J. London Math. Soc. Ser. 2, 18 (1978), 475–483 | DOI | MR | Zbl
[8] Carleson L., Gamelin T.W., Complex dynamics, Springer, New York, 1993 | MR | Zbl
[9] Davies E.B., “A review of Hardy inequalities”, The Maz'ya anniversary collection, v. 2, Oper. Theory. Adv. and Appl., 110, Birkhäuser, Basel, 1999, 55–67 | MR | Zbl
[10] Fernández J.L., Rodríguez J.M., “The exponent of convergence of Riemann surfaces. Bass Riemann surfaces”, Ann. Acad. sci. Fenn. A.I: Math., 15 (1990), 165–182 | MR
[11] Garnett J.B., Marschall D.E., Harmonic measure, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[12] Hardy G.H., Littlewood J.E., Polya G., Inequalities, Cambridge Univ. Press, Cambridge, 1973
[13] Maz'ya V.G., Sobolev spaces, Springer, Berlin–New York, 1985 | MR
[14] Opic B., Kufner A., Hardy-type inequalities, Pitman Res. Notes Math., 219, Longman, Harlow, 1990 | MR | Zbl
[15] Osgood B.G., “Some properties of $f''/f'$ and the Poincaré metric”, Indiana Univ. Math. J., 31 (1982), 449–461 | DOI | MR | Zbl
[16] Pommerenke Ch., “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32 (1979), 192–199 | DOI | MR | Zbl