Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2006_254_a6, author = {D. S. Volk}, title = {The {Density} of {Separatrix} {Connections} in the {Space} of {Polynomial} {Foliations} in~$\mathbb C\mathrm P^2$}, journal = {Informatics and Automation}, pages = {181--191}, publisher = {mathdoc}, volume = {254}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a6/} }
TY - JOUR AU - D. S. Volk TI - The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$ JO - Informatics and Automation PY - 2006 SP - 181 EP - 191 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a6/ LA - ru ID - TRSPY_2006_254_a6 ER -
D. S. Volk. The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$. Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 181-191. http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a6/
[1] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl
[2] Khudai-Verenov M.G., “Ob odnom svoistve reshenii odnogo differentsialnogo uravneniya”, Mat. sb., 56:3 (1962), 301–308 | MR | Zbl
[3] Scherbakov A.A., “O plotnosti orbity psevdogruppy konformnykh otobrazhenii i obobschenii teoremy Khudai-Verenova”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1982, no. 4, 10–15 | Zbl
[4] Nakai I., “Separatrices for non-solvable dynamics on $\mathbb C,0$”, Ann. Inst. Fourier, 44:2 (1994), 569–599 | MR | Zbl
[5] Milnor Dzh., Golomorfnaya dinamika, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2000
[6] Pyartli A.S., “Kvadratichnye vektornye polya na $\mathbb C\mathrm P^2$ s razreshimoi gruppoi monodromii na beskonechnosti”, Tr. MIAN, 254 (2006), 130–161 | MR
[7] Pyartli A.S., “Ratsionalnye differentsialnye uravneniya s kommutativnoi gruppoi monodromii na beskonechnosti”, Tr. Mosk. mat. o-va, 61 (2000), 75–106 | MR | Zbl