The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$
Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 181-191
Voir la notice de l'article provenant de la source Math-Net.Ru
A complex analog of the Hayashi connecting lemma is proved; namely, in the space of polynomial vector fields of degree higher than $1$ on the complex plane, the vector fields that have a common complex separatrix of two singular points are dense.
@article{TRSPY_2006_254_a6,
author = {D. S. Volk},
title = {The {Density} of {Separatrix} {Connections} in the {Space} of {Polynomial} {Foliations} in~$\mathbb C\mathrm P^2$},
journal = {Informatics and Automation},
pages = {181--191},
publisher = {mathdoc},
volume = {254},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a6/}
}
TY - JOUR AU - D. S. Volk TI - The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$ JO - Informatics and Automation PY - 2006 SP - 181 EP - 191 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a6/ LA - ru ID - TRSPY_2006_254_a6 ER -
D. S. Volk. The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$. Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 181-191. http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a6/