Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property
Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 162-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The topology of leaves of a generic analytic foliation on the complex plane is studied. It is proved that for a generic foliation all leaves are topological disks except for at most a countable number of topological cylinders. It is also shown that such foliations possess the Kupka–Smale property.
@article{TRSPY_2006_254_a5,
     author = {T. S. Firsova},
     title = {Topology of {Analytic} {Foliations} in~$\mathbb C^2$. {The} {Kupka--Smale} {Property}},
     journal = {Informatics and Automation},
     pages = {162--180},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a5/}
}
TY  - JOUR
AU  - T. S. Firsova
TI  - Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property
JO  - Informatics and Automation
PY  - 2006
SP  - 162
EP  - 180
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a5/
LA  - ru
ID  - TRSPY_2006_254_a5
ER  - 
%0 Journal Article
%A T. S. Firsova
%T Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property
%J Informatics and Automation
%D 2006
%P 162-180
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a5/
%G ru
%F TRSPY_2006_254_a5
T. S. Firsova. Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property. Informatics and Automation, Nonlinear analytic differential equations, Tome 254 (2006), pp. 162-180. http://geodesic.mathdoc.fr/item/TRSPY_2006_254_a5/