Voir la notice du chapitre de livre
@article{TM_2024_325_a12,
author = {M. V. Pavlov},
title = {Compatible {Pairs} of {Dubrovin{\textendash}Novikov} {Poisson} {Brackets} and {Lagrangian} {Representations} of {Integrable} {Hierarchies}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {238--243},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2024_325_a12/}
}
TY - JOUR AU - M. V. Pavlov TI - Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 238 EP - 243 VL - 325 UR - http://geodesic.mathdoc.fr/item/TM_2024_325_a12/ LA - ru ID - TM_2024_325_a12 ER -
%0 Journal Article %A M. V. Pavlov %T Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 238-243 %V 325 %U http://geodesic.mathdoc.fr/item/TM_2024_325_a12/ %G ru %F TM_2024_325_a12
M. V. Pavlov. Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 238-243. http://geodesic.mathdoc.fr/item/TM_2024_325_a12/
[1] B. A. Dubrovin, “Differential geometry of strongly integrable systems of hydrodynamic type”, Funct. Anal. Appl., 24:4 (1990), 280–285 | DOI | MR | Zbl
[2] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups: Lect. Montecatini Terme, Italy, 1993, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[3] B. A. Dubrovin, “Hamiltonian PDEs and Frobenius manifolds”, Russ. Math. Surv., 63:6 (2008), 999–1010 | DOI | DOI | MR | MR | Zbl
[4] B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitham averaging method”, Sov. Math., Dokl., 27 (1983), 665–669 | MR | Zbl
[5] B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl
[6] Ferapontov E.V., “Nonlocal Hamiltonian operators of hydrodynamic type: Differential geometry and applications”, Topics in topology and mathematical physics, AMS Transl. Ser. 2, 170, Am. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl
[7] Ferapontov E.V., “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 34:11 (2001), 2377–2388 | DOI | MR | Zbl
[8] Maltsev A.Ya., Novikov S.P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2 (2001), 53–80 | DOI | MR | Zbl
[9] O. I. Mokhov, “On compatible Poisson structures of hydrodynamic type”, Russ. Math. Surv., 52:6 (1997), 1310–1311 | DOI | DOI | MR
[10] O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Russ. Math. Surv., 57:1 (2002), 153–154 | DOI | DOI | MR | MR | Zbl
[11] Nutku Y., Pavlov M.V., “Multi-Lagrangians for integrable systems”, J. Math. Phys., 43:3 (2002), 1441–1459 | DOI | MR | Zbl
[12] M. V. Pavlov, “Elliptic coordinates and multi-Hamiltonian structures of hydrodynamic type systems”, Dokl. Math., 50:3 (1995), 374–377 | MR | Zbl
[13] M. V. Pavlov, “The description of pairs of compatible first-order differential geometric Poisson brackets”, Theor. Math. Phys., 142:2 (2005), 244–258 | DOI | DOI | MR | Zbl
[14] M. V. Pavlov and S. P. Tsarev, “Tri-Hamiltonian structures of Egorov systems of hydrodynamic type”, Funct. Anal. Appl., 37:1 (2003), 32–45 | DOI | DOI | MR | Zbl
[15] S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math., Dokl., 31 (1985), 488–491 | MR | Zbl
[16] S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR, Izv., 37:2 (1991), 397–419 | DOI | MR | Zbl