On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction of the Wehrl entropy is proposed for an arbitrary locally compact abelian group $G$. It is proved that the Wehrl entropy is not less than a certain nonnegative integer, which is an invariant of the group $G$. The minimum of the Wehrl entropy is attained on coherent states.
Keywords: coherent states, Wehrl entropy
Mots-clés : commutation relations.
@article{TM_2024_324_a8,
     author = {Evgeny I. Zelenov},
     title = {On the {Minimum} of the {Wehrl} {Entropy} for a {Locally} {Compact} {Abelian} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a8/}
}
TY  - JOUR
AU  - Evgeny I. Zelenov
TI  - On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2024
SP  - 95
EP  - 100
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2024_324_a8/
LA  - ru
ID  - TM_2024_324_a8
ER  - 
%0 Journal Article
%A Evgeny I. Zelenov
%T On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2024
%P 95-100
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2024_324_a8/
%G ru
%F TM_2024_324_a8
Evgeny I. Zelenov. On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100. http://geodesic.mathdoc.fr/item/TM_2024_324_a8/