Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2024_324_a10, author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev}, title = {On {Some} {Properties} of the {Fractional} {Derivative} of the {Brownian} {Local} {Time}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {109--123}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2024_324_a10/} }
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - On Some Properties of the Fractional Derivative of the Brownian Local Time JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 109 EP - 123 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2024_324_a10/ LA - ru ID - TM_2024_324_a10 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T On Some Properties of the Fractional Derivative of the Brownian Local Time %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 109-123 %V 324 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2024_324_a10/ %G ru %F TM_2024_324_a10
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On Some Properties of the Fractional Derivative of the Brownian Local Time. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 109-123. http://geodesic.mathdoc.fr/item/TM_2024_324_a10/
[1] Biane Ph., Yor M., “Valeurs principales associées aux temps locaux browniens”, Bull. sci. math., 111 (1987), 23–101 | MR | Zbl
[2] M. S. Birman and M. Z. Solomyak, Spectral Theory of Self-adjoint Operators in Hilbert Space, Kluwer, Dordrecht, 1987 | MR | Zbl
[3] A. N. Borodin and I. A. Ibragimov, Limit Theorems for Functionals of Random Walks, Proc. Steklov Inst. Math., 195, Am. Math. Soc., Providence, RI, 1995 | MR | Zbl
[4] A. N. Borodin and P. Salminen, Handbook of Brownian Motion: Facts and Formulae, Birkhäuser, Basel, 2002 | MR | Zbl
[5] Bouleau N., Yor M., “Sur la variation quadratique des temps locaux de certaines semimartingales”, C. r. Acad. sci. Paris. Ser. 1, 292 (1981), 491–494 | MR | Zbl
[6] Cherny A.S., “Principal values of the integral functionals of Brownian motion: Existence, continuity and an extension of Ito's formula”, Séminaire de probabilités XXXV, Lect. Notes Math., 1755, Springer, Berlin, 2001, 348–370 | DOI | MR | Zbl
[7] Föllmer H., Protter Ph., Shiryayev A.N., “Quadratic covariation and an extension of Ito's formula”, Bernoulli, 1:1–2 (1995), 149–169 | DOI | MR | Zbl
[8] I. M. Gel'fand and G. E. Shilov, Generalized Functions, v. 1, Properties and Operations, Academic Press, New York, 1964 | MR
[9] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969
[10] A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl