Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2023_323_a14, author = {Yirui Zhao and Yoshihiro Sawano and Jin Tao and Dachun Yang and Wen Yuan}, title = {Bourgain--Morrey {Spaces} {Mixed} with {Structure} of {Besov} {Spaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {252--305}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a14/} }
TY - JOUR AU - Yirui Zhao AU - Yoshihiro Sawano AU - Jin Tao AU - Dachun Yang AU - Wen Yuan TI - Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2023 SP - 252 EP - 305 VL - 323 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2023_323_a14/ LA - ru ID - TM_2023_323_a14 ER -
%0 Journal Article %A Yirui Zhao %A Yoshihiro Sawano %A Jin Tao %A Dachun Yang %A Wen Yuan %T Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2023 %P 252-305 %V 323 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2023_323_a14/ %G ru %F TM_2023_323_a14
Yirui Zhao; Yoshihiro Sawano; Jin Tao; Dachun Yang; Wen Yuan. Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 252-305. http://geodesic.mathdoc.fr/item/TM_2023_323_a14/
[1] Adams D.R., Morrey spaces, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2015 | DOI | MR | Zbl
[2] Adams D.R., Xiao J., “Morrey spaces in harmonic analysis”, Ark. Mat., 50:2 (2012), 201–230 | DOI | MR | Zbl
[3] Aguilera N.E., Harboure E.O., “On the search for weighted norm inequalities for the Fourier transform”, Pac. J. Math., 104 (1983), 1–14 | DOI | MR | Zbl
[4] Auscher P., Prisuelos-Arribas C., “Tent space boundedness via extrapolation”, Math. Z., 286:3–4 (2017), 1575–1604 | DOI | MR | Zbl
[5] Bégout P., Vargas A., “Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation”, Trans. Amer. Math. Soc., 359:1 (2007), 5257–5282 | DOI | MR | Zbl
[6] Benedek A., Panzone R., “The spaces $L^p$, with mixed norm”, Duke Math. J., 28 (1961), 301–324 | DOI | MR | Zbl
[7] Bergh J., Löfström J., Interpolation spaces: An introduction, Grundl. Math. Wiss., 223, Springer, Berlin, 1976 | Zbl
[8] Blasco O., Ruiz A., Vega L., “Non interpolation in Morrey–Campanato and block spaces”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 28:1 (1999), 31–40 | MR | Zbl
[9] Bourgain J., “On the restriction and multiplier problems in $\mathbb R^3$”, Geometric aspects of functional analysis: Isr. semin. (GAFA), 1989–90, Lect. Notes Math., 1469, Springer, Berlin, 1991, 179–191 | DOI | MR
[10] H. Brezis, “How to recognize constant functions. A connection with Sobolev spaces”, Russ. Math. Surv., 57:4 (2002), 693–708 | DOI | DOI | MR | Zbl
[11] Brezis H., Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011 | MR | Zbl
[12] Calderón A.P., “Intermediate spaces and interpolation, the complex method”, Stud. math., 24 (1964), 113–190 | DOI | MR | Zbl
[13] Coulibaly S., Fofana I., “On Lebesgue integrability of Fourier transforms in amalgam spaces”, J. Fourier Anal. Appl., 25:1 (2019), 184–209 | DOI | MR | Zbl
[14] Coulibaly S., Sanogo M., Fofana I., “Sufficient conditions for the Lebesgue integrability of Fourier transforms in amalgam spaces”, Commun. Math. Anal., 22:2 (2019), 61–77 | MR | Zbl
[15] Cruz-Uribe D., Moen K., “One and two weight norm inequalities for Riesz potentials”, Ill. J. Math., 57:1 (2013), 295–323 | MR | Zbl
[16] Di Fazio G., Nguyen T., “Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations”, Rev. Mat. Iberoamer., 36:6 (2020), 1627–1658 | DOI | MR | Zbl
[17] Di Fazio G., Ragusa M.A., “Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients”, J. Funct. Anal., 112:2 (1993), 241–256 | DOI | MR | Zbl
[18] Diarra N., Fofana I., “On preduals and Köthe duals of some subspaces of Morrey spaces”, J. Math. Anal. Appl., 496:2 (2021), 124842 | DOI | MR | Zbl
[19] Duoandikoetxea J., Fourier analysis, Grad. Stud. Math., 29, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[20] Feichtinger H.G., Feuto J., “Pre-dual of Fofana's spaces”, Mathematics, 7:6 (2019), 528 | DOI
[21] Feuto J., “Norm inequalities in generalized Morrey spaces”, J. Fourier Anal. Appl., 20:4 (2014), 896–909 | DOI | MR | Zbl
[22] Feuto J., Fofana I., Koua K., “Weighted norm inequalities for a maximal operator in some subspace of amalgams”, Can. Math. Bull., 53:2 (2010), 263–277 | DOI | MR | Zbl
[23] Fofana I., “Étude d'une classe d'espace de fonctions contenant les espaces de Lorentz”, Afr. Mat. Ser. 2, 1:1 (1988), 29–50 | MR | Zbl
[24] Fofana I., “Transformation de Fourier dans $(L^q,\ell ^p)^\alpha $ et $M^{p,\alpha }$”, Afr. Mat. Ser. 3, 5 (1995), 53–76 | MR | Zbl
[25] Fofana I., “Espace $(L^q,l^p)^\alpha $ et continuité de l'opérateur maximal fractionnaire de Hardy–Littlewood”, Afr. Mat. Ser. 3, 12 (2001), 23–37 | MR | Zbl
[26] Fofana I., Faléa F.R., Kpata B.A., “A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators”, Afr. Mat., 26:5–6 (2015), 717–739 | DOI | MR | Zbl
[27] Folland G.B., Real analysis: Modern techniques and their applications, Pure Appl. Math. Wiley-Intersci. Ser. Texts Monogr. Tracts, 2nd ed., J. Wiley Sons, New York, 1999 | MR | Zbl
[28] Fremlin D.H., Topological Riesz spaces and measure theory, Cambridge Univ. Press, London, 1974 | MR | Zbl
[29] Hakim D.I., Nakamura S., Sawano Y., “Complex interpolation of smoothness Morrey subspaces”, Constr. Approx., 46:3 (2017), 489–563 | DOI | MR | Zbl
[30] Hakim D.I., Sawano Y., “Complex interpolation of various subspaces of Morrey spaces”, Sci. China. Math., 63:5 (2020), 937–964 | DOI | MR | Zbl
[31] Hatano N., Nogayama T., Sawano Y., Hakim D.I., “Bourgain–Morrey spaces and their applications to boundedness of operators”, J. Funct. Anal., 284:1 (2023), 109720 | DOI | MR | Zbl
[32] Hu P., Li Y., Yang D., “Bourgain–Morrey spaces meet structure of Triebel–Lizorkin spaces”, Math. Z., 304:1 (2023), 19 | DOI | MR | Zbl
[33] Hu P., Tao J., Yang D., “New John–Nirenberg–Campanato-type spaces related to both maximal functions and their commutators”, Math. Methods Appl. Sci., 46:5 (2023), 5937–5963 | DOI | MR
[34] Izumi T., Sato E., Yabuta K., “Remarks on a subspace of Morrey spaces”, Tokyo J. Math., 37:1 (2014), 185–197 | MR | Zbl
[35] Jia H., Tao J., Yang D., Yuan W., Zhang Y., “Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes”, Anal. Math. Phys., 12:1 (2022), 15 | DOI | MR
[36] Jia H., Tao J., Yang D., Yuan W., Zhang Y., “Special John–Nirenberg–Campanato spaces via congruent cubes”, Sci. China. Math., 65:2 (2022), 359–420 | DOI | MR | Zbl
[37] Kalton N., Mayboroda S., Mitrea M., “Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations”, Interpolation theory and applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 121–177 | DOI | MR | Zbl
[38] Kpata B.A., Fofana I., “Isomorphism between Sobolev spaces and Bessel potential spaces in the setting of Wiener amalgam spaces”, Commun. Math. Anal., 16:2 (2014), 57–73 | MR | Zbl
[39] Kpata B.A., Fofana I., Koua K., “Necessary condition for measures which are $(L^q,L^p)$ multipliers”, Ann. Math. Blaise Pascal, 16:2 (2009), 339–353 | DOI | MR | Zbl
[40] Lemarié-Rieusset P.G., “Multipliers and Morrey spaces”, Potential Anal., 38:3 (2013), 741–752 | DOI | MR | Zbl
[41] Li Y., Yang D., Huang L., Real-variable theory of Hardy spaces associated with generalized Herz spaces of Rafeiro and Samko, Lect. Notes Math., 2320, Springer, Singapore, 2022 | MR | Zbl
[42] Lin C.-C., Yang Q., “Semigroup characterization of Besov type Morrey spaces and well-posedness of generalized Navier–Stokes equations”, J. Diff. Eqns., 254:2 (2013), 804–846 | DOI | MR | Zbl
[43] Liu L., Wu S., Yang D., Yuan W., “New characterizations of Morrey spaces and their preduals with applications to fractional Laplace equations”, J. Diff. Eqns., 266:8 (2019), 5118–5167 | DOI | MR | Zbl
[44] Lu Y., Yang D., Yuan W., “Interpolation of Morrey spaces on metric measure spaces”, Can. Math. Bull., 57:3 (2014), 598–608 | DOI | MR | Zbl
[45] Masaki S., Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, E-print, 2016, arXiv: 1605.09234 [math.AP]
[46] Masaki S., Segata J., “Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 35:2 (2018), 283–326 | DOI | MR | Zbl
[47] Masaki S., Segata J., “Refinement of Strichartz estimates for Airy equation in nondiagonal case and its application”, SIAM J. Math. Anal., 50:3 (2018), 2839–2866 | DOI | MR | Zbl
[48] Mastyło M., Sawano Y., “Complex interpolation and Calderón–Mityagin couples of Morrey spaces”, Anal. PDE, 12:7 (2019), 1711–1740 | DOI | MR | Zbl
[49] Mastyło M., Sawano Y., Tanaka H., “Morrey-type space and its Köthe dual space”, Bull. Malays. Math. Sci. Soc. Ser. 2, 41:3 (2018), 1181–1198 | DOI | MR | Zbl
[50] Morrey C.B., \textup {Jr.}, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl
[51] Moyua A., Vargas A., Vega L., “Restriction theorems and maximal operators related to oscillatory integrals in $\mathbb R^3$”, Duke Math. J., 96:3 (1999), 547–574 | DOI | MR | Zbl
[52] Sawano Y., Di Fazio G., Hakim D.I., Morrey spaces: Introduction and applications to integral operators and PDE's, v. 1, 2, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2020 | MR
[53] Sawano Y., Sugano S., “Complex interpolation and the Adams theorem”, Potential Anal., 54:2 (2021), 299–305 | DOI | MR | Zbl
[54] Sawano Y., Tanaka H., “The Fatou property of block spaces”, J. Math. Sci. Univ. Tokyo, 22:3 (2015), 663–683 | MR | Zbl
[55] Shen Z., “Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains”, Amer. J. Math., 125:5 (2003), 1079–1115 | DOI | MR | Zbl
[56] Tao J., Yang Da., Yang Do., “Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces”, Math. Methods Appl. Sci., 42:5 (2019), 1631–1651 | DOI | MR | Zbl
[57] Tao J., Yang Da., Yang Do., “Beurling–Ahlfors commutators on weighted Morrey spaces and applications to Beltrami equations”, Potential Anal., 53:4 (2020), 1467–1491 | DOI | MR | Zbl
[58] Tao J., Yang D., Yuan W., “A bridge connecting Lebesgue and Morrey spaces via Riesz norms”, Banach J. Math. Anal., 15:1 (2021), 20 | DOI | MR
[59] Tao J., Yang D., Yuan W., “A survey on function spaces of John–Nirenberg type”, Mathematics, 9:18 (2021), 2264 | DOI
[60] Tao J., Yang D., Yuan W., “Vanishing John–Nirenberg spaces”, Adv. Calc. Var., 15:4 (2022), 831–861 | DOI | MR | Zbl
[61] Tao J., Yang D., Yuan W., Zhang Y., “Compactness characterizations of commutators on ball Banach function spaces”, Potential Anal., 58:4 (2023), 645–679 | DOI | MR
[62] Tao J., Yang Z., Yuan W., “John–Nirenberg-$Q$ spaces via congruent cubes”, Acta math. sci. Ser. B (Engl. ed.), 43:2 (2023), 686–718 | MR | Zbl
[63] Wei X., Tao S., “The boundedness of Littlewood–Paley operators with rough kernels on weighted $(L^q,\ell ^p)^\alpha (\mathbb R^n)$ spaces”, Anal. Theory Appl., 29:2 (2013), 135–148 | DOI | MR | Zbl
[64] Yang D., Yuan W., Zhuo C., “Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces”, Anal. Appl. (Singap.), 11:5 (2013), 1350021 | DOI | MR | Zbl
[65] Yuan W., Sickel W., Yang D., Morrey and Campanato meet Besov, Lizorkin and Triebel, Lect. Notes Math., 2005, Springer, Berlin, 2010 | DOI | MR | Zbl
[66] Zeng Z., Chang D.-C., Tao J., Yang D., “Nontriviality of Riesz–Morrey spaces”, Appl. Anal., 101:18 (2022), 6548–6572 | DOI | MR | Zbl
[67] Zhang Y., Yang D., Yuan W., Wang S., “Real-variable characterizations of Orlicz-slice Hardy spaces”, Anal. Appl. (Singap.), 17:4 (2019), 597–664 | DOI | MR | Zbl