Stability of Real Solutions to Nonlinear Equations and Its Applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stability of solutions to nonlinear equations in finite-dimensional spaces. Namely, we consider an equation of the form $F(x)=\overline {y}$ in the neighborhood of a given solution $\overline {x}$. For this equation we present sufficient conditions under which the equation $F(x)+g(x)=y$ has a solution close to $\overline {x}$ for all $y$ close to $\overline {y}$ and for all continuous perturbations $g$ with sufficiently small uniform norm. The results are formulated in terms of $\lambda $-truncations and contain applications to necessary optimality conditions for a conditional optimization problem with equality-type constraints. We show that these results on $\lambda $-truncations are also meaningful in the case of degeneracy of the linear operator $F'(\overline {x})$.
Keywords: $\lambda $-truncated mappings, directionally regular $\lambda $-truncation, necessary minimum condition, nonlinear equation, $2$-regularity.
@article{TM_2023_323_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Stability of {Real} {Solutions} to {Nonlinear} {Equations} and {Its} {Applications}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2023_323_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Stability of Real Solutions to Nonlinear Equations and Its Applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 5
EP  - 16
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2023_323_a0/
LA  - ru
ID  - TM_2023_323_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Stability of Real Solutions to Nonlinear Equations and Its Applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 5-16
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2023_323_a0/
%G ru
%F TM_2023_323_a0
A. V. Arutyunov; S. E. Zhukovskiy. Stability of Real Solutions to Nonlinear Equations and Its Applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 5-16. http://geodesic.mathdoc.fr/item/TM_2023_323_a0/

[1] A. V. Arutyunov, Optimality Conditions. Abnormal and Degenerate Problems, Kluwer, Dordrecht, 2000 | MR | MR | Zbl

[2] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russ. Math. Surv., 67:3 (2012), 403–457 | DOI | DOI | MR | Zbl

[3] A. V. Arutyunov, “Existence of real solutions of nonlinear equations without a priori normality assumptions”, Math. Notes, 109:1–2 (2021), 3–14 | DOI | DOI | MR | Zbl

[4] A. V. Arutyunov and S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl

[5] E. R. Avakov, “Extremum conditions for smooth problems with equality-type constraints”, USSR Comput. Math. Math. Phys., 25:3 (1985), 24–32 | DOI | MR | Zbl | Zbl

[6] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | Zbl

[7] E. R. Avakov and A. V. Arutyunov, “Inverse function theorem and conditions of extremum for abnormal problems with non-closed range”, Sb. Math., 196:9 (2005), 1251–1269 | DOI | DOI | MR | Zbl

[8] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 2009 | MR | MR

[9] L. A. Lyusternik, “On conditional extrema of functionals”, Mat. Sb., 41:3 (1934), 390–401 | Zbl

[10] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lect. Notes Math., 6, Am. Math. Soc., Providence, RI, 1974 | MR | Zbl